
How we are going to migrate
to Scala 3

Lukas Rytz, Scala Team @ Lightbend

@lrytz Twitter / GitHub

 Bern, CH

!1

Talk Outline

🛤 Perspective on Scala 3

🤝 Working Together

⏳ Timeline and Migration Path

!2

Part 1
🛤

 

A Perspective on Scala 3

!3

Principles Behind Scala 3

• Compatibility with Scala 2 – evolution, no revolution

• Simplifications: features need to carry their weight

• Embrace idioms and become more opinionated

• Consistency: enforce Scala's strengths

!4

Paradigm Shift
• Best example: implicits. Low-level feature to express

• Type classes
• Extension methods
• Contextual abstraction
• Type level computation

• Implicit conversions are too easy to define

!5

Extension Methods, Toplevel Definitions
package object p {
 implicit class StringExtension(private val s: String)
 extends AnyVal {
 def bold = s"*$s*"
 }
}

package p
def (s: String) bold = s"*$s*"

Simpler with problem-specific features in Scala 3:

!6

Enumerations, Abstract Data Types
• scala.Enumeration: hacks using reflection, open bugs

• ADTs are a very common idiom, require boilerplate

sealed abstract class Option[+T] {
 def isEmpty = this eq None
}
final case class Some[+T](v: T)
 extends Option[T]
case object None
 extends Option[Nothing]

enum Option[+T] {
 case Some(v: T)
 case None
 def isEmpty = this eq None
}

!7

Type Class Encoding
trait Show[-A] { def show(a: A): String }

object Show {
 implicit val IntShow: Show[Int] = a => s"int $a"

 implicit def optionShow[T](implicit s: Show[T]): Show[Option[T]] = {
 case Some(v) => s"some ${s.show(v)}"
 case None => "none"
 }
}

def show[T](v: T)(implicit s: Show[T]) = s.show(v)

show(Some(1)) // "some int 1"

delegate IntShow for Show[Int] = ...

delegate [T] for Show[Option[T]] given (s: Show[T]) = ...

def show[T](v: T) given (s: Show[T]) = ...

!8

Type Class Encoding
trait Show[-A] { def show(a: A): String }

delegate IntShow for Show[Int] = a => s"int $a"

delegate [T] for Show[Option[T]] given (s: Show[T]) = {
 case Some(v) => s"some ${s.show(v)}"
 case None => "none"
}

def show[T](v: T) given (s: Show[T]) = s.show(v)

show(Some(1)) // "some int 1"

!9

Type System Evolution

• Union and intersection types (not tagged)

• Type lambdas

• Function types: dependent, polymorphic, implicit

• Improved type inference

!10

Scala 3 by Migration Impact

1. Breaking changes

2. New features

3. De-emphasized features that continue to be supported

4. Unchanged features

dotty.epfl.ch/docs/reference/features-classification.html

!11

https://dotty.epfl.ch/docs/reference/features-classification.html

Breaking Changes

• Unsupported:  
 

• Scala 2 compatibility mode: procedure syntax

symbol literals auto application

forSome (wildcards List[_] are ok) early initializers

!12

packages in implicit scope 🐌 operator _@_*

DelayedInit (to do)

Macros and Metaprogramming

• New API to implement macros

• More principled (inlining, quotes, splices, TASTy-based)

• Safer (typed trees only)

• Talk by Nicolas Stucki (earlier today)

• Some macros no longer needed (type class derivation)

!13

Specialization

• Still on the drawing board

• Scala 3 will deliver specialization for core types
(functions, tuples) neede for performance

• By difficulty: methods, classes, superclasses / trais

• Reach out to the Scala 3 team at EPFL if you're affected

!14

New Features
• Incomplete list:  
 
 

• New features can be introduced gradually in a codebase

• Requirement: no cross-building with Scala 2

trait parameters opaque types

toplevel definitions enums extension methods

enhanced type system

!15

match types, inline matches

Scala 2 Support
• The Scala 3 compiler supports almost all of Scala 2

• Scala 2 features that continue to work:

implicits (parameters, values, conversions, classes)

package objects, package object inheritance

value classes XML literals compound types (A with B)

!16

Unchanged in Scala 3
• Standard library, including collections

• Tooling: sbt, IntelliJ, VS Code

• Ecosystem: we will invest in helping maintainers to cross-
build their libraries

• Everything else, for example: classes and objects
functions pattern matching JVM & JS

Java interop regression tests
!17

Talk Outline

🛤 Perspective on Scala 3

🤝 Working Together

⏳ Timeline and Migration Path

!18

Who's Behind Scala
LAMP: Research lab @ EPFL

Lead: Martin Odersky
Scala 3, Research, Teaching

Scala Center @ EPFL
Lead: Sébastien Doeraene

Tooling, Education, Community

Scala Team @ Lightbend
Lead: Adriaan Moors

Scala 2, Standard Library

January
2018

!19

Scala 3 Design Discussions
• Issues or PRs at github.com/lampepfl/dotty

• Discourse contributors.scala-lang.org/c/language-design

• SIP Committee: EPFL, Scala Center, Lightbend, Community

• Offline, over ☕, 🍲 or 🍺

• 3x per year at Lightbend meetups (Scala team + Martin)
• Weekly at EPFL meetings (EPFL team + Adriaan)

!20

https://github.com/lampepfl/dotty/
https://contributors.scala-lang.org/c/language-design

Scala 2.14: Prepare for 3

• Backport features:

• Deprecations:

• Removals:

trait parameters
opaque typestype lambdas

toplevel definitions

early initializerspackage object inheritance
forSome existentials

procedure syntax symbol literals

auto-application

!21

2.14 and 3: Developed Together

• Same standard library

• Invest in sharing code: test suite, compiler components

• Enable maintainers to cross-build on 2.14 and 3

!22

2.14 and 3: Binary Interop

• Scala 3 code can use libraries compiled by Scala 2.14

• Allows migrating the ecosystem gradually

• The compilers generate binary compatible bytecode

• Caveat: Scala 2 macros

• Scala 2.14 will emit TASTy, enables common tooling

!23

Testing

• Binary compatibility: Build with both compilers, compare
classfiles

• Integration test for TASTy: "frankenstein" compiler
• Scala 2.14: Parser, Typer → TASTy
• Scala 3: TASTy → bytecode

!24

Community Build

• Build the Scala ecosystem (compatible versions) from
source for any Scala version

• Roughly 3M lines of code (2.12)

• Scala 3 community build getting started

• Testing, quantifying the impact of breaking changes

!25

Talk Outline

🛤 Perspective on Scala 3

🤝 Working Together

⏳ Timeline and Migration Path

!26

Timeline

!27

20
19

20
20 20
21

20
22

Scala 2.13.0

Scala 3

Scala 2.14

Scala 3 M1 
feature freeze

Migration
• Move to 2.14 first

• Use scalafix (github.com/scala/scala-rewrites) for syntax
changes (procedure syntax, symbol literals)

• On 2.14: migrate off deprecated features (forSome, early
initializers → trait parameters)

• Rewrite macros when migrating to Scala 3

!28

https://github.com/scala/scala-rewrites

Cross Building

• Goal: one cross-building ecosystem
• Upgrade dependencies separately from Scala 3

• Scala version dependent source directories
• Needed for projects defining macros
• Maybe: //# if scala.version =~ "3.*"

!29

Scala Maintenance

• Lightbend Scala Team
• Develop 2.14
• Maintain 2.14 for a long time
• After 2.14, support and maintain Scala 3

• LAMP Team at EPFL: develop Scala 3

!30

Summary

🛤 Scala 3 is Scala 2 + 1

🤝 We are all working together to ensure 

 migration will be smooth

!31

