
A PRACTICAL EFFECT SYSTEM FOR SCALA

THIS IS A TEMPORARY TITLE PAGE
It will be replaced for the final print by a version

provided by the service academique.

Thèse No 5935 (2013)
présenté le 4 Septembre 2013
à la Faculté Informatique et Communications
Laboratoire de Méthodes de Programmation 1
Programme Doctoral en Informatique, Communications et Infor-
mation
École Polytechnique Fédérale de Lausanne

pour l’obtention du grade de Docteur ès Sciences
par

Lukas Rytz

acceptée sur proposition du jury:

Prof Friedrich Eisenbrand, président du jury
Prof Martin Odersky, directeur de thèse
Prof Peter Müller, rapporteur
Prof Ondřej Lhoták, rapporteur
Prof Viktor Kunčak, rapporteur

Lausanne, EPFL, 2013

Zusammenfassung

Computerprogramme interagieren mit ihrer Umgebung durch Seiteneffekte zur Ein- und

Ausgabe. Andere Seiteneffekte wie Speicheränderungen oder Ausnahmen sind mächtige

Werkzeuge und geben Programmierern viele Möglichkeiten. Quelltexte mit Seiteneffekten

sind allerdings oft schwierig zu verstehen, Fehler verursacht durch Seiteneffekte sind schwer

zu diagnostizieren und das mögliche Auftreten von Seiteneffekten hindert Übersetzer daran,

den Code zu optimieren.

Das Ziel dieser Dissertation ist die Entwicklung eines praktischen Werkzeuges welches es

Programmierern erlaubt, Seiteneffekte in Funktionen zu beschreiben und zu überprüfen.

Wir stellen ein leichtes und einfach zu verstehendes Typen-und-Effektsystem vor welches

Seiteneffekte, oder deren Ausbleiben, in häufigen Programmiermustern beschreiben kann. Die

fundamentale Idee von Typen-und-Effektsystemen ist es, die Seiteneffekte einer Funktion in

ihrer Typensignatur zu beschreiben. Um die möglichen Seiteneffekte eines Funktionsaufrufes

zu berechnen benötigt das System einzig die Signatur der aufgerufenen Funktion und nicht

deren Quelltext.

Obschon Typen-und-Effektsysteme seit mehr als 25 Jahren existieren ist ihr Gebrauch in

etablierten Programmiersprachen minimal: die Überprüfung zur Übersetzungszeit von Aus-

nahmen in Java ist das einzige existierende Typen-und-Effektsystem in einer weit verbreiteten

Sprache. In dieser Dissertation untersuchen wir die Probleme welche den praktischen Einsatz

von Effektsystemen erschweren und schlagen neue Lösungen vor, welche diese Probleme

gezielt angehen.

Methoden deren Seiteneffekte von den Effekten der Parameter abhängen sind allgegenwärtig,

sowohl in objekt-orientierten als auch in funktionalen Programmiersprachen. Ein zentrales El-

ement eines erfolgreichen Typen-und-Effektsystems ist daher eine leichte Syntax zur Beschrei-

bung von effekt-polymorphen Funktionen. Wir entwerfen ein intuitives Notierungssystem

für Effekt-Polymorphismus, sogenannte relative Effektannotationen, welches auf ausdruck-

abhängigen Typen beruht und gleichzeitig mehrere Effekt-Domänen umfasst. Wir stellen ein

generisches Effektsystem vor welches mehrere Arten von Effekten gleichzeitig überprüfen

kann und das Implementieren von neuen Effekt-Domänen erlichtert. Wir untersuchen das

System formell und validieren es mit einer Implementation für die Programmiersprache Scala.

iii

Einer der meistbenutzten Seiteneffekte ist die Veränderung von Speicher. Diese Effekte sind

aber aufgrund von Aliasing schwer zu kontrollieren. Wir stellen ein neues Effektsystem vor

welches die Purität von Funktionen, die Absenz von Speicherveränderungen, in funktionalen

und objekt-orientierten Sprachen wie Scala überprüft. Das System kann das Ausbleiben von

sichtbaren Seiteneffekten in gängigen Situationen zeigen, zum Beispiel die Konstruktion eines

Containers mit einem veränderbaren Puffer. Die Effekt-Annotationen für Purität sind kompakt

und einfach zu verstehen.

Wir haben das generische Effektsystem und Effekt-Domänen für EA, Ausnahmen und Pu-

rität als Übersetzer-Erweiterung für Scala implementiert. Effekt-Annotationen sind normale

Typenannotationen und benötigen keine Veränderung der Syntax von Scala. Wir haben das

System erfolgreich zur Überprüfung von Seiteneffekten in der Container-Bibliothek von Scala

eingesetzt, welche funktionellen Code mit Seiteneffekten auf verschiedene Arten vermischt.

Schlagwörter: Typen-und-Effektsysteme, Effekt-Polymorphismus, Effekt-Annotationen, Pu-

rität, Scala, Übersetzer-Erweiterungen, Aufsteckbare Typensysteme, Typensysteme, Program-

manalyse

iv

Abstract

Computer programs interact with their environment through IO effects. Other side effects such

as state modifications or exceptions are powerful tools that give flexibility to programmers.

However, source code with side effects is often hard to understand, bugs involving side effects

are difficult to diagnose and the possibility of side effects prevents compilers from applying

optimizations.

The goal of this dissertation is to provide programmers with a practical tool that allows them

to specify and to verify side effects in their programs. We propose a lightweight and easy to

understand type-and-effect system that can express side effects, or their absence, in common

programming patterns. The fundamental idea of type-and-effect systems is to include the side

effects of a function in its type signature. To compute the side effects of a function invocation,

the system only needs to consider the function’s signature but not its source code.

Even though type-and-effect systems exist for more than 25 years, their adoption in main-

stream programming languages has been minimal: the compile-time verification of checked

exceptions in Java is the only type-and-effect system that exists in a widely used language. In

this dissertation, we identify a number of issues that hinder the adoption of effect systems

and propose new ideas that address them effectively.

Methods whose effect depends on their parameters are ubiquitous in both object-oriented

and functional programming languages. Hence, a necessary ingredient of a successful effect

system is a lightweight syntax for expressing effect-polymorphic functions. We design an

intuitive annotation system for effect-polymorphism called relative effect annotations, which

uses dependent types and is independent of specific effect domains. We propose a generic

effect system that can check multiple kinds of effects at the same time and that can be easily

extended with new effect domains. We formally study the system and validate it with an

implementation for the Scala programming language.

One of the most widely used side effects is state modification, but it is also one of the most

challenging to control because of aliasing. We introduce a new effect system for purity with

respect to state modifications that is designed for functional and object-oriented languages

like Scala. The system can express purity of common programming patterns that involve

higher-order code and local state, e.g., the construction of a collection using a mutable buffer.

v

The effect annotations for purity are concise and easy to understand.

We implemented the generic framework for effect checking and effect domains for purity, IO

and exceptions as a compiler plugin for Scala. Effect annotations are expressed as standard

type annotations and no changes to the Scala language are required. We successfully applied

the effect system to the core of the Scala collections library which mixes higher-order code

and side effects in various ways.

Keywords: type-and-effect systems, effect-polymorphism, effect annotations, purity, Scala,

compiler plugins, pluggable type systems, type systems, program analysis

vi

Acknowledgements

I would like to thank my advisor Martin Odersky for the guidance and inspiration that form

the basis of this thesis. I am deeply grateful for the opportunity to be part of an amazing team

and for his trust to let me contribute to an exciting and unique project. Martin was much more

than just an advisor: it was a lot of fun to spend time with him and his family in coffee breaks,

on barbecue lawns, at dinner tables and on skiing slopes.

I thank the members of my thesis jury, Friedrich Eisenbrand, Ondřej Lhoták, Peter Müller

and Viktor Kunčak for their time and for the helpful comments that helped me to improve my

thesis.

My past and present colleagues at LAMP were not only wonderful collaborators but equally

great friends and inspiring people to look up to. Thank you all for making this PhD such a

great time! A special thanks goes to Nada and Philipp for the fruitful collaboration.

I am endlessly thankful towards my parents Gertrud and Peter. They have always encouraged

me to accept new challenges and supported me in pursuing my goals. I am not only moved by

their patience and endurance in loving and supporting their children, but also by their humble

and diligent attitude in life. I would also like to thank my brothers Christian and Hanspeter

who make me realize that a family is so much more than just friendships.

Finally, I would like to thank my wife Denisa for her unconditional love and encouragement.

Undoubtedly, the most exciting event during the time of my PhD was not related to research,

but our beautiful marriage. I am looking forward to our common life with heartwarming joy.

September 2013 Lukas Rytz

vii

Contents

Zusammenfassung (Deutsch) iii

Abstract (English) v

Acknowledgements vii

Table of Contents xi

1 Introduction 1

1.1 Overview . 5

1.2 Contributions . 6

1.3 Related Work . 7

1.3.1 Type-and-Effect Systems . 7

1.3.2 Monads . 8

1.3.3 Alternative Systems for Controlling Effects 9

1.3.4 Program Verification . 10

2 A Generic Framework for Polymorphic Effect-Checking 13

2.1 Introducing Type-and-Effect Systems . 14

2.1.1 Effects Have “May” Semantics . 15

2.1.2 A Generic Representation for Effects . 16

2.2 Effect-Polymorphism . 17

2.2.1 The Need for Lightweight Syntax . 19

2.2.2 Effect-Polymorphic Function Types . 19

2.3 Abstracting Over Effect Domains . 21

2.4 Combining Multiple Effect Domains . 22

2.4.1 Annotating Multiple Effect Domains . 22

2.5 Static Semantics . 24

2.5.1 Subtyping . 24

2.5.2 Typing Rules . 26

2.6 Examples of Concrete Effect Domains . 28

2.6.1 Exceptions . 28

2.6.2 Asynchronous Operations . 30

2.7 Dynamic Semantics . 32

ix

Contents

2.7.1 Extensible Effect Domains . 32

2.7.2 Evaluation Rules . 33

2.8 Effect Soundness . 34

2.8.1 Consistency Requirement . 35

2.8.2 Soundness Proofs . 36

2.9 Conclusion . 37

3 Dependent Types for Relative Effects Declarations 39

3.1 Overview . 40

3.1.1 Relative Effect Declarations . 41

3.2 Formalization . 41

3.2.1 Subtyping . 42

3.2.2 Typing Rules . 48

3.3 Relative Effect Declarations in Scala . 51

3.3.1 Syntax for Relative Effect Annotations . 51

3.3.2 Refined Types for Effect-Polymorphism . 54

3.3.3 Relative Effects for Nested Definitions . 55

3.4 Expressiveness of Relative Effects . 59

3.5 Related Work . 63

3.6 Conclusion . 64

4 A Type-and-Effect System for Purity 65

4.1 Introduction . 65

4.2 Overview . 66

4.2.1 Purity and Modification Effects . 66

4.2.2 Ownership and Locality . 67

4.2.3 Freshness and Result Localities . 69

4.2.4 Effects of Field Updates . 70

4.2.5 Freshness Depends on Purity . 71

4.3 Formalization . 72

4.3.1 Subtyping . 74

4.3.2 Typing Rules . 75

4.3.3 Typing PUR Requires ANF . 79

4.4 Implementation of the Purity System for Scala . 80

4.4.1 Assignment Effects . 80

4.4.2 Flow-Insensitivity to Support Higher-Order Code 83

4.4.3 Polymorphic Purity Effects . 84

4.4.4 Examples and Limitations . 86

4.5 Related Work . 93

4.5.1 Regions . 94

4.5.2 Ownership Types . 94

4.5.3 Pointer Analysis . 95

4.5.4 Other Related Work . 96

x

Contents

4.6 Conclusion . 97

5 Effect Checking in Scala 99

5.1 Programming With Effects . 99

5.1.1 Annotating Effects in Multiple Domains 101

5.1.2 Ascriptions and Effect Casts . 102

5.1.3 Annotating Constructors and Default Arguments 103

5.1.4 Singleton Objects, Lazy Values and By-Name Parameters 104

5.1.5 Effects Affect Typing and Subtyping . 105

5.2 Effect Checking in the Scala Collections Library 107

5.2.1 Option . 107

5.2.2 Breaks . 108

5.2.3 Core Collection Classes . 109

5.3 Implementing Effect Domains . 111

5.3.1 Effect Lattice . 111

5.3.2 Domain Definition . 112

5.4 Internals of the Compiler Plugin . 114

5.4.1 Compiler Plugins for Scala . 114

5.4.2 Naming and Typing in the Scala Compiler 115

5.4.3 Implementation of the Effects Plugin . 116

5.4.4 Propagation of Type Annotations in the Scala Compiler 119

5.4.5 Implementing Effect Checking as a Separate Compilation Phase 123

5.5 Future Work . 124

5.5.1 Effect Annotations for Existing Libraries 124

5.5.2 Effect Inference for Existing Libraries . 125

5.5.3 External Effect Domain Definitions . 125

5.6 Conclusion . 126

6 Conclusion 127

A Soundness Proof for LPE 129

A.1 Lemmas . 129

A.1.1 Canonical Forms . 129

A.1.2 Value Typing Environment . 130

A.1.3 Substitution Lemmas . 130

A.2 Soundness Theorems . 134

A.2.1 Preservation . 134

A.2.2 Effect Soundness . 136

Bibliography 147

Curriculum Vitae 149

xi

Chapter 1

Introduction

Computer programs communicate with their environment and perform changes to it. For

example they can display the result of a computation, log information about their progress,

write data to files or send packets in the network. Such operations are performed by invoking

specific built-in functions provided by programming languages. These functions are said to

be “side effecting” because they not only compute a resulting value, but also have observable

effects on the environment. The side effects listed above deal with input / output (IO). In

general, each observable behavior of a function other than computing a result is a computa-

tional effect. In most programming languages functions can perform effects such as modifying

existing program state, returning a random value, raising an exception, entering an infinite

loop or blocking a thread.

On the one hand, side effects are necessary and powerful because they enable interaction with

the environment and give a lot of flexibility to programmers. For example, mutable arrays have

constant time read and update operations, and hardware supported implementations make

operations on them very fast on most platforms. Efficient implementations of algorithms and

data structures are often based on arrays and state mutation effects. On the other hand, source

code that has side effects is often hard to understand and bugs can be difficult to diagnose.

Purely Functional Programming Languages

A programming language is called purely functional if functions written in it cannot have side

effects. For the definition of functional purity which we elaborate in this section, we consider

the article by Sabry [1998] entitled “What is a purely functional language?”. The fundamental

characteristic that distinguishes languages with side effects from pure languages is whether

the order of evaluation matters for the semantics of a program.

To illustrate the impact of the evaluation strategy on the semantics, Sabry uses a language

calledΛ!, a lambda calculus with a global counter accessible through the primitives inc and

1

Chapter 1. Introduction

read. The counter is initialized to 0, function read returns its current value and function inc

increments the counter and returns its previous value. We consider the following program:

(λx.λy.y +x) inc read

If we evaluate this term using call-by-value, it first reduces to “(λx.λy.y + x) 0 1” and then

gives the final result 1. The evaluation using call-by-name first reduces the term to “read+inc”

and then yields the final result 0.

Consequently, Sabry defines a language to be purely functional if it can be implemented

using either call-by-name, call-by-need or call-by-value with no observable differences, but

he explicitly excludes termination effects from the observable behavior of a program. For

example, in a purely functional language, the same term that produces a result in call-by-name

might diverge when evaluated using call-by-value. By this definition, the above example

proves thatΛ! is not a purely functional programming language.

One advantage of the absence of side effects is that it enables equational reasoning: if a

value is defined as “x = fun arg”, then all occurrences of the invocation “fun arg” are equal

to the value x. Pure programs are easier to understand for both programmers and code

analysis tools. Furthermore, since the evaluation order does not influence the semantics of a

program, compilers and runtime environments have more possibilities to optimize programs.

For example, independent expressions can be executed in parallel or operations on data

structures can be fused, as shown by Coutts et al. [2007].

Yet, programs are ultimately executed for the sake of their side effects and therefore purely

functional languages are faced with the problem of integrating effects. In order to remain

purely functional, a language needs to ensure two properties with respect to side effects across

all evaluation strategies: first, the order in which effects are executed has to be consistent,

and second, effectful operations have to be executed exactly once, i.e., not discarded, nor

duplicated.

The most popular solution for integrating effects into a pure language are Monads [Moggi,

1991], [Peyton Jones and Wadler, 1993]. In particular, they are widely used in the Haskell

programming language [Wadler, 1997]. Other solutions include linear types [Wadler, 1990]

and the idea of using witness values to create dependencies between effectful operations

[Terauchi and Aiken, 2005]. The reader is referred to Chapter 1 of the PhD thesis of Lippmeier

[2010] which presents an approachable and extensive introduction to these systems.

Impure Programming Languages

Languages that are not purely functional are called impure programming languages. They

choose to trade the ability to re-order the evaluation of expressions for the added expres-

siveness of allowing arbitrary side effects. Impure languages typically use a call-by-value

2

evaluation semantics because this makes programs with side effects easier to understand: a

block of statements is evaluated from top to bottom and left to right, so the lexical structure

reveals the order in which side effects are executed1.

Today’s most popular programming languages, including C, Java, Scala, Python and JavaScript,

are impure languages with call-by-value evaluation semantics. The ability to freely introduce

side effects in arbitrary functions and expressions gives programmers a great amount of

flexibility. For example, they can freely introduce print statements to check intermediate

values of a computation when debugging an application.

The downside of this flexibility is that side effects can hide just about anywhere, or more

precisely, in every function. A programmer using an external library does not know what side

effects a library function invocation might cause; he has to either trust the documentation or

look at the source code if available. If a function throws an exception, then a client can guard

against failures by catching and handling it, but most side effects are not easily observable or

reversible.

The inability to specify side effects is problematic not only for the clients of a library, but

also for its authors. When a library function executes code that is passed as argument by the

client, this code might have arbitrary side effects and executing it might put the library into an

inconsistent state. One example can be found in Scala’s futures library, which is designed for

executing operations asynchronously. The contract of the library states that code passed for

execution should never block its thread, however this contract is not enforced. Section 2.6.2

discusses this problem in detail and shows a possible solution.

Last but not least, information about side effects and purity can be exploited by compilers and

runtime environments to optimize programs. For example, invocations of pure functions can

be omitted if the returned value is never used. Such dead code is rarely written by programmers

directly, however it appears in combination with other optimizations such as inlining. An

example in Scala where pure code can be eliminated is when inlining a method defined in

a singleton object. Constructors of singleton objects may have arbitrary side effects which

are executed the first time the object or one of its members is accessed. When the compiler

inlines a method defined in a singleton object, it might not know if the object has already been

initialized. The compiler has to emit an invocation of the object initializer in addition to the

inlined code, which ensures that the semantics are preserved. If the object initializer is known

to have no side effects, this invocation can be omitted.

Controlling Side Effects in Impure Languages

The goal of this dissertation is to provide programmers with a practical tool that allows them to

control side effects in impure languages. Specifically, we propose a type-and-effect system, an

1In C and C++, the order of evaluation of function arguments is unspecified, but all arguments are evaluated
before the function is invoked

3

Chapter 1. Introduction

extension to an ordinary type system, which can express the effects of common programming

idioms while remaining lightweight in annotation and easy to understand for programmers.

We study the system using formal techniques and evaluate it with an implementation for the

Scala programming language.

Type-and-effect systems were first proposed by Gifford and Lucassen [1986] with the goal

to delimit the scope of effects on memory locations. The same technique can also be used

to track other kinds of side effects, such as the ones described earlier in this chapter. The

fundamental idea is to express the side effects of each function in its type signature, so that

the type system can compute the effects of an expression using the signatures of invoked

functions and knowledge about effects of built-in operations. We present a formal introduction

to type-and-effect systems in Section 2.1.

Tracking side effects in the type system has a number of benefits. First of all, type systems are

the most widespread technique for static code analysis and programmers are familiar with

them. An extended type system does not introduce a new tool which needs to be integrated

into the development workflow. Second, effect systems can be naturally incorporated into

integrated development environments (IDEs), which gives developers immediate information

about the side effects of the methods they are using and writing. Thanks to their inherent

modularity — functions are analyzed separately using the type and effect annotations of

other functions — type systems are known to scale well and work in the context of separate

compilation. Finally, the annotation overhead introduced by a type system can be alleviated to

some degree with local or global type inference. In a type system with global inference, types of

values are computed using constraints that may depend on arbitrary parts of the program. For

example, to compute the parameter type of a function, the type inference algorithm typically

takes all invocations of the function into account. Type inference becomes challenging in the

presence of either records or subtyping, as explained in [Pierce, 2002, Chapter 22]. Local type

inference such as in Scala or C# on the other hand only uses local information to compute types

of variables or functions. This typically means that parameter types need to be specified, but

result types of methods, types of variables and fields and also type parameters in polymorphic

method invocations can be computed.

With all these promising aspects of type-and-effect systems in mind, the natural question to

ask is: Why are effect systems not more widespread? Currently there exists only one effect

system in a widely used, impure programming language, namely the mechanism for verifying

checked exceptions in Java. Even more, this particular system has earned a lot of critique

about its verbosity and lack of expressiveness [Hejlsberg, 2003], [van Dooren and Steegmans,

2005], which in turn influenced language designers not to put effect systems for exceptions

into new languages [Hejlsberg, 2003], [Odersky, 2013].

In this dissertation, we study the problems that hinder the adoption of effect systems in

mainstream languages and propose new ideas that address these issues effectively. The

high-level goal is to design a practical effect system with the right balance between nota-

4

1.1. Overview

tional and conceptual overhead, simplicity and expressive power. We believe that one of the

necessary ingredients of a successful effect system is a lightweight syntax for expressing effect-

polymorphic functions. Methods whose effect depends on their arguments are ubiquitous in

both object-oriented and functional programming languages, as we show later on.

The proposed system is not only an effect checker that is given “as is” to programmers, but

rather an extensible framework for effect checking in which new kinds of side effects, so

called effect domains, can be integrated easily. In addition, the system is optional and can be

easily disabled: effect annotations are simply ignored when effect checking is not enabled,

which leaves programmers with the choice of using the tool or not. In this thesis, we discuss a

number of concrete effect domains, including IO, checked exceptions and state modifications,

which are available in the implementation for the Scala language.

The flexibility and generality of the Scala programming language and its platform makes it

possible to implement the effect system without changing the language specification or the

compiler. The effect system is implemented as a compiler plugin and effect annotations are

expressed as standard type annotations which are simply ignored by the Scala compiler if the

compiler plugin is not enabled. The effect annotations for effect-polymorphism and for state

effects make extensive use of dependent types. Finally, refinement types are used to track the

effects of anonymous functions and classes, which is essential for checking effect-polymorphic

code.

1.1 Overview

The four following chapters in this dissertation describe different aspects of the effect systems

presented in this thesis. Chapter 2 starts by formally introducing type-and-effect systems

and motivating the need for lightweight effect-polymorphism. The effect system presented

in this chapter uses a simple strategy for expressing effect-polymorphic functions which

does not make use of explicit effect type parameters. We show that effect-polymorphism is

independent of specific effect domains by embedding the language into a framework for effect

checking which is extensible to new effect domains. The soundness proof is parametrized

by monotonicity lemmas that are required to hold for each effect domain. This means that

proving soundness of the system when adding a new effect domain does not require an

inductive proof.

In Chapter 3 we introduce relative effect annotations, a simple scheme for annotating effect-

polymorphism based on dependent types that scales well in object-oriented languages. While

relative effects are intuitive and easy to write and understand, they are also expressive enough

to capture common higher-order code patterns such as those found in the Scala collections

library.

One of the most important effect domains is state modifications, however it is also notoriously

5

Chapter 1. Introduction

difficult to handle because state can be arbitrarily aliased in general. The effect system for

purity presented in Chapter 4 is capable of expressing common programming patterns that

use local state without exposing any observable side effects, like the use of an iterator or

building a collection using a buffer. At the same time the type system remains remarkably

simple to use and understand.

Finally, in Chapter 5 we show how the effect system is integrated into Scala and evaluate

the expressiveness and annotation overhead using core examples from the Scala library. We

explain the internals of the compiler plugin and show how effect checking is integrated into

the type checking process.

1.2 Contributions

This thesis proposes solutions to several problems which make it difficult to integrate type-

and-effect systems into impure programming languages. The main contributions of this thesis

are the following:

• We introduce a lightweight annotation system for expressing effect-polymorphism that

is intuitive and easy to use. We show that it can describe the behavior of common

higher-order programming patterns.

• We present a generic effect system with lightweight effect-polymorphism that can check

multiple effect domains at the same time, an extension of the work by Marino and

Millstein [2009] that is discussed in Section 1.3.1. We show that practical default effects

for non-annotated methods reduce the annotation overhead and at the same time

facilitate integrating the system into existing languages.

• We show that dependent types are a concise and natural method to express effect

annotations for certain effect systems. Our effect system makes use of dependent types

to express effect-polymorphism and state modification effects.

• We present a new effect system for purity with respect to state modification that builds

on existing work by Pearce [2011] and that can express purity of higher-order code which

is common in functional languages with nested definitions like Scala. The modularity

and flow-insensitivity of the effect system allow it to be integrated as an effect domain

into the generic framework for effect checking.

• We implemented the generic effect system and the effect domains for IO, exceptions and

purity as a compiler plugin for the Scala language. The implementation works with the

official release of the Scala compiler and did not require changes to the Scala language

since effects are expressed as standard annotations. The effect system supports local

effect inference in the same way that Scala supports local type inference. Compiler plug-

ins that are integrated into the type checking process can be enabled in the presentation

6

1.3. Related Work

compiler mode of the Scala compiler which is used for interactive error reporting in

IDEs. Programmers receive immediate feedback about side effects “as they type” which

makes effect checking a helpful tool during development, in addition to the verification

when compiling the source code.

1.3 Related Work

In this section we review existing techniques for controlling side effects that are used in either

pure or impure languages. The discussion of existing work related to the topics covered in the

individual chapters of this thesis is deferred to those chapters.

1.3.1 Type-and-Effect Systems

Type-and-effect systems were originally designed by Gifford and Lucassen [1986] and later

extended to support effect and region polymorphism by Lucassen and Gifford [1988] as a

means to track effects on memory locations. The basic idea is to separate the store into regions,

bind state allocations to specific regions and express effects on the store in terms of those

regions. Such an effect system forms the basis of the FX programming language [Gifford et al.,

1992]. The technique of expressing effects as part of a function’s type has since been used in

other settings, including the type systems in this thesis.

Talpin and Jouvelot [1992b] introduce subeffecting and present an inference algorithm for

types, regions and effects. The work by Talpin and Jouvelot [1992a] shows that effect inference

solves the problem of unsound let-polymorphism in the presence of mutable storage cells,

which is usually addressed with the conservative value restriction as noted by Pierce [2002],

Chapter 22.7. This inference algorithm is the basis of the work on DDC by Lippmeier [2010],

an extension of Haskell with mutable state that uses call-by-value semantics for effectful parts

of programs.

Later work by Tofte and Talpin [1994] shows how type, region and effect inference can be

used to provide a stack based implementation for programming languages with reference

allocations and updates. This system has been implemented by Tofte et al. [January 2006] in

the context of the MLKit programming language.

In programming languages with global type inference like Haskell and ML, the use of an

effect system with global inference is a natural choice. The effect system presented in this

dissertation on the other hand has a different focus: it is designed to integrate with object-

oriented and functional programming languages with subtyping and without global type

inference, languages like Scala or C#. This implies that programmers will be confronted with

effect annotations and should be able to write and read them with reasonable effort. In such

a setting, explicit region and effect parameters for constructors and polymorphic methods

7

Chapter 1. Introduction

are syntactically too heavyweight. But even in languages with global effect inference, the size

and complexity of effect annotations is relevant because they are visible to programmers, for

instance in module signatures or error messages.

There are a number of computational effects for which type-and-effect systems have been

designed, including exceptions [Gosling et al., 2013], purity [Pearce, 2011], atomicity [Abadi

et al., 2008] or access to widgets in graphical user interfaces [Gordon et al., 2013]. The work

by Marino and Millstein [2009] factors out the commonalities of various effect systems into

a generic framework which is proven to be sound for arbitrary well-behaved effect domains.

The effect system presented in Chapter 2 can be seen as an extension of this work with

lightweight effect-polymorphism and the ability to combine multiple effect domains. One

difference is that their system features tagging of runtime values and a whole-program analysis

to reconstruct which tags can flow into a function argument. Our system on the other hand is

designed to work modularly on the basis of effect annotations.

Like most effect systems, the generic effect system by Marino and Millstein [2009] records

effects in an unordered fashion and accordingly expresses them as sets that form a lattice.

Nielson and Nielson [1999] introduce behaviors, a richer representation for effects which

also takes into account the order in which the effects take place. The temporal information

in behaviors enables modeling advanced properties such as communication protocols or

resource usage contracts.

1.3.2 Monads

Monads were originally introduced by Moggi [1991] and popularized by Peyton Jones and

Wadler [1993] as the main technique for integrating effects into the Haskell language. Despite

their great success, there are two well known issues with monadic effect handling that have

been described in the literature. The first issue is that source code which uses multiple kinds

of side effects has to combine multiple monads, which is not straightforward, as recently

illustrated by Brady [2013]. The solution to monad composition in Haskell are monad trans-

formers [Liang et al., 1995], which often require programmers to lift operations explicitly into

the resulting monad instance.

The second issue is that introducing side effects into an existing function requires refactoring

that function to monadic style, and also other code that uses it has to be adapted. As described

in Chapter 1 of the thesis of Lippmeier [2010], the fact that monadic and pure code have

incompatible types leads to code duplication: for example the function map in Haskell can

only apply a pure function over the elements of a list. To apply an effectful function, the

language provides a second implementation mapM.

Wadler [1998] showed that monads are equivalent to type-and-effect systems: a lattice of

effects can be represented as a lattice of monads that are connected by monad morphisms.

8

1.3. Related Work

The productors framework by Tate [2013] is a general theory that formalizes the semantics of

sequential composition of “producer” effects. Their system subsumes various generalizations

of monads, for example as indexed monads, which are equivalent to classical type-and-effect

systems. However, productors are more expressive than existing approaches based on monads

or effect systems with an effect lattice and can encode effects like locking, which depend on

the ordering of a sequence of statements.

1.3.3 Alternative Systems for Controlling Effects

Algebraic effects [Bauer and Pretnar, 2012] are an alternative representation for effects that

can express common monadic effects such as state, IO and exceptions, but not continuations.

Defining new algebraic effects is lightweight and unlike monads, combining effects is straight-

forward, which encourages fine-grained effect definitions. Their system does not check effects

statically. This means that programs might evaluate to an undefined state where an effect

operation appears outside a handler, in which case execution gets stuck.

Brady [2013] presents an implementation of algebraic effects for the IDRIS language, which

does not require any changes to the host language. New effects are defined as standard

data types and given semantics by creating an instance of the Handler type class for the new

type. Effect handlers are typically implemented using monads, the system provides a flexible

abstraction that does not compete with monads but builds on them. Using the support for

dependent types, the type system statically ensures that functions cannot use any effects

which are not available in their signature. However, there is no support for effect inference.

The most straightforward way to introduce ordering of side effects in a programming language

with undefined evaluation order is by manually threading a value as parameter through

functions with effects. Linear types [Wadler, 1990] make this technique robust by ensuring

that this world parameter cannot be duplicated or discarded. The type system with uniqueness

types by Barendsen and Smetsers [1993] is based on ideas from linear types and has been

implemented in the Clean programming language. The main disadvantage of this approach to

ordering effects is that the programmer has to manually handle the world parameters, which

can be tedious.

Terauchi and Aiken [2005] present a similar system for ordering effects in which witness values

are passed as additional function arguments. Since multiple witness values can be created,

the system is more flexible than the linear type systems and allows arbitrary ordering of non-

interfering effects. A semantic condition on the use of witness values that can be checked with

a static algorithm guarantees correctness of programs.

The Koka programming language by Leijen [2012] features an effect system that can express

effect-polymorphism and also functions like exception handlers that mask effects. Combining

effects of multiple domains is straightforward; effects are represented as simple labels, and

each function has a set of effects, which can be either annotated by the programmer or inferred.

9

Chapter 1. Introduction

The system does not feature subeffecting, i.e., ordering between effect labels. Therefore the

effect systems presented in this thesis, which use an effect lattice, could not be directly

expressed in Koka.

1.3.4 Program Verification

The goals of program specification and verification systems overlap to some degree with those

of effect systems. Method contracts typically denote the portion of the program state that

a method operates on, called the frame, for example using a modifies clause in ESC/Java

[Flanagan et al., 2002] or Spec# [Leino and Müller, 2010]. Like in effect systems, method

contracts in object-oriented languages need to restrict behavior of overriding methods in

order for the system to be sound2.

Program verification has a wider scope than effect systems, at the cost of increased complexity.

Specifications have to be provided by the programmer and are often non-trivial to express:

Leino [2010] comments his verifiable implementation of the Schorr-Waite graph algorithm

with the phrases “32 lines of quantifier-filled loop invariants can be a mouthful” and “The

hardest thing in writing the program is deciphering the verifier’s error messages. That task is

not yet for non-experts”.

The main difficulties in verifying framing specifications are caused by the possibility of aliasing

and the desire for abstraction and information hiding. In the case of Spec#, consistency of

data is specified using ownership annotations [Leino and Müller, 2004], a system that enables

modular specifications which interact well with subclassing and enable specifications for

recursive data structures. Ownership enforces global constraints on aliasing that have to

be maintained by programs throughout their entire lifetime. Ownership type systems are

discussed in more detail in Section 4.5.2.

To abstract over private state, verification systems often provide the possibility to define

specification variables, also called ghost variables, which describe the private state of a module.

Kassios [2006] defines dynamic frames as specification variables whose values are sets of

allocated locations and expresses framing conditions in terms of these variables. In addition

to the modified or accessed state, specifications can express properties like capturing existing

state or allocating a fresh object in the representation. Dynamic frames can express object

relations like those described by ownership annotations but are more flexible because no

programming restrictions are enforced. The Dafny language by Leino [2010] uses dynamic

frames and expresses memory footprints in terms of reads, modifies and fresh clauses.

Banerjee et al. [2008] introduce region logic, a first-order Hoare logic which expresses frame

conditions in terms of first class regions. The benefit of treating regions as ghost state is that it

makes the logic compatible with existing automated tools that support first-order specification

2ESC/Java deliberately allows overriding methods to specify an unsound “also modifies” clause in favor of the
enhanced flexibility

10

1.3. Related Work

languages based on classical logic. Inspired by separation logic, modular reasoning is enabled

by a static analysis of the footprint of a formula, which is the state that the formula allows to

be accessed.

Smans et al. [2009] introduce implicit dynamic frames, a variant of the dynamic frames

approach inspired by separation logic in which frame information is inferred from access

assertions in pre- and postconditions. A method can only modify an existing location if that

location is required to be accessible by its precondition. This approach leads to more concise

method contracts and fewer proof obligations that must be discharged by the verifier.

In his seminal paper introducing separation logic, Reynolds [2002] shows that Hoare style

verification systems “suffer from either limited applicability or extreme complexity, and scale

poorly to programs of even moderate size”. Separation logic defines a new logical operation

P ∗Q, called the separating conjunction, which asserts that formulas P and Q hold for disjoint

portions of the heap. Valid specification {P }c{Q} are required to be tight which means that the

formula P must describe all of the heap that s needs during execution. Tight specifications

enable local reasoning, the ability to prove specifications of code using only those memory

cells that the program accesses, which is expressed through the frame rule: if c does not modify

free variables of R, then {P }c{Q} implies {P ∗R}c{Q ∗R} .

Parkinson and Bierman [2008] develop techniques to apply separation logic to object-oriented

programming languages with inheritance. They split up the specification of a method into

a static part, which is used for verifying the implementation, and a dynamic part used for

verifying dynamically bound invocations. Dynamic specifications are written in terms of

abstract predicates that can be overridden in subclasses, which leads to modular specifications

that do not need to be reverified for each subclass that inherits a method.

Separation logic is a non-classical logic which requires custom theorem provers for automated

verification. Piskac et al. [2013] introduce a translation from a decidable fragment of separation

logic to a first-order theory, which enables using of the advanced tools that exist for first-order

logic. Their article also discusses earlier work that pursues similar goals.

In a recent article, Dinsdale-Young et al. [2013] present the “Views” framework, a metatheory

that can express various program analyses like type systems and program logics. The view

of a thread is defined as an abstract knowledge about the state of the machine and the rights

to change that state. The knowledge of one thread must be immune to operations of other

threads. They present encodings of various existing systems in their framework, for example

simple type systems, type systems with strong updates like linear types, and program logics

like separation logic.

11

Chapter 2

A Generic Framework for Polymorphic
Effect-Checking

This chapter presents a generic framework for polymorphic effect checking using lightweight

annotations. The framework is independent of a specific effect domain.

Support for effect-polymorphic functions is essential for the expressiveness of an effect system:

higher-order functions whose behavior depends on their argument functions are ubiquitous

not only in functional programming languages, but equally in object-oriented languages

where they appear in the form of the common “strategy” pattern [Gamma et al., 1995] and

delegation in general. One famous example is the map function which transforms the elements

of a collection using its argument function. The side effects of an invocation of map depend on

the function which is passed as argument: if for example a pure function is passed to map, then

the invocation does not have any side effects.

The effect system for checked exceptions in Java has earned a lot of critique for its verbosity

and limited expressiveness [Hejlsberg, 2003], [van Dooren and Steegmans, 2005]. For example,

identical exception declarations often need to be copied between methods, and the verbose

syntax tempts programmers to use over-approximations instead of precisely expressing the

exceptions of a method. Support for effect-polymorphism is a fundamental ingredient to

solve these issues. However, as shown in Section 2.2.1, it is vital that effect-polymorphism can

be expressed in a lightweight fashion which is easy to use and does not require unnecessary

refactorings.

Towards this goal, the effect system in this chapter introduces a new kind of function type for

denoting effect-polymorphic functions. In a monomorphic function type T
e=⇒U , the effect

e denotes the latent effect, the effect that might occur when the function is invoked. For an

effect-polymorphic function type T
e−→U , the latent effect consists of both e and the latent

effect of its argument type T .

13

Chapter 2. A Generic Framework for Polymorphic Effect-Checking

As mentioned in Section 1.2, the system is an extension of the generic effect system by Marino

and Millstein [2009] with lightweight effect-polymorphism and the ability to combine multiple

effect domains. The number of effect annotations required to annotate effects of multiple

domains remains manageable thanks to intelligent defaults. The effect system is shown to

be sound, and soundness is preserved when instantiating it to one or multiple well-behaved

effect domains.

2.1 Introducing Type-and-Effect Systems

Traditional type systems such as the simply typed lambda calculus described in Pierce [2002]

assign to every term a type that describes the value to which the term evaluates. A type-and-

effect system, often just called an effect system, in addition assigns an effect to every term. This

effect describes the side effects that may occur when the term is evaluated. Type-and-effect

systems were first described by Gifford and Lucassen [1986] as a mechanism to delimit the

scope of read, write and allocation effects on memory locations. The fundamental techniques

in their system are however not tied to effects on memory locations and have been successfully

extended to other kinds of computational effects, for instance IO or exceptions.

The type-and-effect system presented in this chapter abstracts over the concrete computa-

tional effects using effect variables. When instantiating the abstract system to a concrete

effect domain, soundness of the resulting effect system follows from soundness of the generic

system and the well-formedness of the effect domain. in Section 2.6 we present examples of

instantiations to concrete effect domains.

We introduce type-and-effect systems using STLCe, a simply typed lambda calculus with

effects described in Figure 2.1. Every function type T1
e=⇒ T2 has an effect annotation e de-

scribing the effect that may occur when executing the function, called the latent effect. In a

concrete effect system, the effect annotation on a function type would describe for instance

the state that the function modifies, or the exceptions that the function might throw. STLCe

represents effects as sets of atomic effects for simplicity. We introduce a refined representation

for abstract effects in Section 2.1.2.

Figure 2.1 also presents the inference rules for STLCe. The typing statement of the form

Γ ` t : T ! e assigns a type T and an effect e to term t . We first observe that the typing rules are

completely standard modulo effect inference and effect annotations in function types.

In rule T-ABS, the latent effect of the function type assigned to the lambda abstraction is the

effect inferred by typing the function body. The function abstraction itself has no effect: as

explained in Chapter 1 we assume a call-by-value evaluation strategy which does not reduce

nested redexes. Therefore, the term under the lambda abstraction is not reduced until the

function is applied to an argument. We say that the effect of t is delayed by the function

abstraction. Purity of a lambda abstraction can also be explained by the fact that lambda

14

2.1. Introducing Type-and-Effect Systems

t ::= x variable
| t t function application
| v value

v ::= (x : T) ⇒ t function abstraction

T ::= T
e=⇒ T function type

e ::= ; | e ∪e effect

Γ ::= x : T typing environment

Γ ` t : T ! e

T-VAR
x : T ∈ Γ

Γ ` x : T ! ; T-ABS
Γ, x : T1 ` t : T2 ! e

Γ ` (x : T1) ⇒ t : T1
e=⇒ T2 ! ;

T-APP
Γ ` t1 : T1

e=⇒ T2 ! e1 Γ ` t2 : T1 ! e2

Γ ` t1 t2 : T2 ! e1 ∪e2 ∪e

t −→ t ′

t1 −→ t ′1
t1 t2 −→ t ′1 t2

t2 −→ t ′2
v1 t2 −→ v1 t ′2 ((x : T) ⇒ t) v −→ [v/x]t

Figure 2.1: Simply Typed Lambda Calculus with Effects (STLCe)

abstractions are values and therefore do not take any evaluation steps.

Typing rule T-APP computes the effect of a function invocation as the union of three effects:

the effect e1 of evaluating the function term, the effect e2 of evaluating the argument term,

and the latent effect e of the function type assigned to t1. As an example, imagine t1 is an

expression which writes to a log and returns a function that might throw an exception, and t2

is a term that reads from the console.

let t1 = { log "t1"; (x: String) ⇒ stringToInt x }
let t2 = readLine ()

The evaluation of the program “t1 t2” has all three side effects: it writes to the log, it reads from

the console, and it may throw an exception.

2.1.1 Effects Have “May” Semantics

Type-and-effect systems typically have “may” semantics for effect annotations, i.e., the effect

of a term inferred by the type system may occur when the term is evaluated, but it does not

have to. We illustrate this by extending STLCe with conditionals (the definition of booleans is

omitted):

t ::= ... | if t t t T-IF
Γ ` tc : Bool ! ec Γ ` t1 : T ! e1 Γ ` t2 : T ! e2

Γ ` if tc t1 t2 : T ! ec ∪e1 ∪e2

15

Chapter 2. A Generic Framework for Polymorphic Effect-Checking

tc −→ t ′c
if tc t1 t2 −→ if t ′c t1 t2 if true t1 t2 −→ t1 if false t1 t2 −→ t2

Typing rule T-IF includes the effects of both branches in the resulting effect, even though only

one of the two terms will be evaluated. For instance, the following function is assigned the

effect of producing an error:

(x: Int) ⇒ (y: Int) ⇒ if (y == 0) (error "div by zero") (x / y)

Since the type-and-effect systems studied in this dissertation adopt “may” semantics for their

effect annotations, they define an upper bound on the effects of a term, but they cannot express

a lower bound. This restriction simplifies the effect system and the abstract representation of

effects, as explained in Section 2.1.2.

There are some effect systems that cannot be expressed in our framework. For example, an

effect system that ensures a locking strategy needs to be able to ensure that a locking effect

has occurred in order to type check a critical section. Existing systems that support such

advanced semantics for effects can be found for instance in the work on behaviors by Nielson

and Nielson [1999] or in the recent work on producer effects by Tate [2013].

2.1.2 A Generic Representation for Effects

In order to design a generic effect system that can represent multiple kinds of side effects, we

need to define an abstract representation for effects on which the system can operate. The

choice of this representation has a direct impact on the expressiveness of the generic effect

system. For instance, if the effect representation in the generic effect system does not register

the order in which effects occur, an effect system that depends on this property cannot be

expressed as an instance of the generic one.

In the framework presented in this chapter, the effects of an effect domain D are represented

as a semi-lattice consisting of the following elements:

• A set of atomic effects ED

• A join operation computing the combination of two effects, tD : ED ×ED ⇒ ED

• A sub-effect relation comparing two effects, vD⊆ (ED ×ED)

• A bottom element ⊥D ∈ ED that satisfies ∀e ∈ ED .⊥D vD e denoting purity, i.e., the

absence of effects

• A top element >D ∈ ED that satisfies ∀e ∈ ED .e vD >D denoting impurity, i.e., allows

arbitrary effects, also called the unknown effect

16

2.2. Effect-Polymorphism

The join operator should be commutative, associative and idempotent. Note that the sub-

effect relation is implicitly defined by the join operation: e1 vD e2 holds if and only if e1tD e2 =
e2. The reason we still include it when defining effect lattices is that it usually has a more

efficient implementation which avoids building the join of the two effects. An explicit sub-

effect relation also helps to clarify the presentation of an effect domain.

The consequence of representing effect domains as simple lattices is that flow-sensitive

systems cannot be encoded in the generic effect system: the order in which effects happen

is not recorded. Instances of the generic system also cannot distinguish if an effect happens

only once or multiple times.

Richer representations for effects that also take into account the order in which effects take

place are described for instance by Nielson and Nielson [1999] or Tate [2013]. However the

added expressiveness for effects comes at the cost of additional complexity in the effect

system. Annotations for effect-polymorphism would need to encode how the abstracted effect

is embedded in the remaining effect of the function. Kneuss et al. [2013] do this by expressing

effects as control flow graph summaries. Such effect annotations are verbose and difficult

to write and understand. To make effect systems practical for every day programming, we

found that classical “may” semantics with a lattice-based representation for effects is a good

compromise between simplicity and the ability to model a relevant amount of the behavior of

programs.

As an example of a concrete effect domain we present the lattice of an effect system tracking

IO effects. It is the simplest possible effect system because there are only two states: every

term either has the IO effect or not.

• Effect set EI = {noIo, io} with ⊥I = noIo and >I = io

• Join operation e1 tI e2 =
io if io ∈ {e1,e2}

noIo otherwise

• Sub-effect relation e1 vI e2 = (e1 = noIo)∨ (e2 = io)

As mentioned before, a valid effect lattice needs to adhere to the common lattice properties.

Showing validity of the IO lattice is straightforward and therefore omitted.

2.2 Effect-Polymorphism

The effect system of STLCe introduced in Section 2.1 only supports monomorphic effects: the

effect of invoking a function is always the same, no matter what arguments are passed into it.

In reality there are many examples where the effect of a function depends on the effects of its

arguments. A famous example is the higher-order function map which transforms the elements

17

Chapter 2. A Generic Framework for Polymorphic Effect-Checking

of a collection using an argument function. The effect of an invocation of map depends on the

effect of the function which is passed to it.

The higher-order function h in the following example takes as argument a function with an

arbitrary effect and invokes it:

let h = (f: Int
>=⇒ Int) ⇒ f 1

In STLCe the function h has type (Int
>=⇒ Int)

>=⇒ Int, so the invocation h increment where a

pure function is passed to h is type checked to have effect >, even though no effects occur at

run-time1.

A common solution to add support for effect-polymorphism, as first described by Lucassen

and Gifford [1988], is to extend the type system with effect type parameters. The function h

would be written as

let h = [e:: Effect] ⇒ (f: Int
e=⇒ Int) ⇒ f 1

where e is a type parameter of kind Effect. The type [e :: Effect] ⇒ (Int
e=⇒ Int)

e=⇒ Int de-

scribes that the effect of h depends on the effect of its function parameter. The invocation

“h ⊥ increment” instantiates the effect parameter to ⊥ and is therefore type checked as pure.

In the case of checked exceptions in Java, the effect types coincide with the types of values

and therefore normal type parametrization can be used to express effect parametrization.

The following example shows a list interface in Java with a monomorphic and an effect-

polymorphic version of the map method:

public interface Function<T, U> {
public U apply(T t) throws Exception;

}

public interface FunctionE<T, U, E extends Exception> {
public U apply(T t) throws E;

}

public interface List<T> {
public <U> List<U> map(Function <T, U> f) throws Exception;
public <U, E extends Exception> List<U> mapE(FunctionE<T, U, E> f) throws E;

}

The monomorphic method map can only accept functions with arbitrary effects as argument

if it declares the top effect, i.e., throws Exception. The second version is polymorphic in the

exception type of its argument function. Note that adding an effect type parameter to map is not

1This example requires a type system with subtyping that allows using a pure function where an effectful
function is expected. Extending STLCe with subtyping is straightforward and analogous to subtyping of the effect
system in Section 2.5.1.

18

2.2. Effect-Polymorphism

enough: the Function type also has to be extended with an explicit exception type parameter.

2.2.1 The Need for Lightweight Syntax

The previous example shows that explicit parametrization for effect-polymorphism results in

code which is syntactically heavy and hard to understand. Another problem is that polymor-

phism is tied to one effect domain: adding a new effect system to Java would lead to additional

effect type parameters.

For languages without global type inference like Scala or Java, the readability and brevity of

declarations are of crucial importance for programmers. For this reason, effect-polymorphism

in Java as shown in the previous example is rarely used in practice, even though higher-order

code such as the strategy pattern is very common.

Checked exceptions in Java have been criticized for their verbosity and limited expressiveness,

for instance by Hejlsberg [2003]. Interestingly, the two mentioned issues are related: writing

effect-polymorphic code in Java is extremely verbose as shown by the previous example. For

this reason developers often chose the more concise monomorphic exception declarations

which do not express the behavior of the program precisely.

On the one hand, we believe that effect-polymorphism is indispensable to the success of an

effect system. On the other hand, it is essential that writing effect-polymorphic functions is

straightforward and lightweight so that the question of using polymorphism or not is not a

question of tradeoffs for developers.

This chapter introduces a new pragmatic way to express effect-polymorphic code: writing an

effect-polymorphic function does not require explicit effect parameters and is as lightweight

as writing an ordinary, monomorphic function. Polymorphic functions are directly supported

in the type system by a new kind of function type, introduced in the following section.

2.2.2 Effect-Polymorphic Function Types

The generic type-and-effect system presented in this chapter introduces a new kind of function

type which, by definition, denotes effect-polymorphic functions. To differentiate between

effect-polymorphic and ordinary, effect-monomorphic functions, we use two kinds of arrows

in function types.

The double arrow ⇒ is used for ordinary function types and has the same meaning as in the

type system for STLCe. If the effect annotation is omitted, the largest possible effect > is

assumed.

An effect-polymorphic function type is expressed with a simple arrow →. Like ordinary

function types, also polymorphic function types are annotated with a latent effect, however

19

Chapter 2. A Generic Framework for Polymorphic Effect-Checking

the default effect is ⊥ when the annotation is omitted.

A simple effect-polymorphic function h is therefore written as:

let h = (f: Int ⇒ Int) → f 1

The type of h is (Int⇒ Int) → Int, which is equivalent to (Int
>=⇒ Int)

⊥−→ Int given the default

effects defined above. The crucial property of an effect-polymorphic function type is that its

latent effect consist of two components:

• The annotated effect, an effect that may occur when the function is invoked, indepen-

dently of the argument. In the example of h, this effect is ⊥.

• The effect of the argument.

For each invocation of a polymorphic function, the effect of the argument can be different,

which results in a different overall effect. To illustrate this we define a pure function f and an

effectful function g :

let f : (Int
⊥=⇒ Int) = (x: Int) ⇒ x + 1

let g: (Int
throws(ex)=======⇒ Int) = throw ex

For each invocation of the function h the effect is computed based on the actual argument

type. The invocation h f has no effect, while the invocation h g has the effect of throwing an

exception.

To illustrate that the type system is able to express the effects of non-trivial functions, the

following example shows an effect-polymorphic map function:

let map: IntList
⊥=⇒ (Int ⇒ Int) → IntList =

(l: IntList) ⇒ (f: Int ⇒ Int) → l match {
case Nil => Nil
case Cons x xs => Cons (f x) (map xs f)

}

Even though the signature of the map function is fully effect-polymorphic, there is only a

single effect annotation ⊥, which denotes purity of the outer function.

An even simpler system for effect-polymorphism could be designed using only a single kind

of function type, but treating every higher-order function as effect-polymorphic. While this

system would work for the map function from the previous example, Section 3.1 shows that

effect-polymorphism is not necessarily tied to parameters of function type. Furthermore, we

argue in Section 3.3.1 that effect-polymorphism is an important aspect of the documentation

of a function and should therefore require an explicit annotation. For these reasons the system

studied in this chapter uses a specific type for effect-polymorphic functions.

20

2.3. Abstracting Over Effect Domains

2.3 Abstracting Over Effect Domains

In Section 2.1.2 we define an abstract representation for effects in the form of a semilattice.

In order to make the framework extensible to multiple effect domains, we additionally want

to give each concrete effect system the possibility of customizing the effect of evaluating a

term. For instance, an effect system for tracking exceptions declares that a throw expression

introduces an effect and that a try expression can mask, or eliminate, effects.

In our framework, this information is provided in the form of a function eff D which returns

the effect of evaluating a term, given the effects of its subterms. This function is closely related

to the “adjust” function in the generic type-and-effect system of Marino and Millstein [2009].

The eff D function takes two arguments: a name indicating the syntactic form in question, and

a list of effects of its subterms. By default it combines all the argument effects using the tD

operator:

eff D(∗,e) =⊔
i

Dei

The default eff D function can be specialized by concrete effect domains. For instance in the

domain of exceptions E introduced in Section 2.6, the definition eff E (THROW(p)) = throws(p)

assigns an effect to throw statements.

In the domain of IO, effects are introduced by calling pre-defined functions that have a latent

io effect. There are no syntactic constructs that introduce or mask IO effects, therefore the

eff I function is left unspecified and the framework will use the default definition.

Monotonicity of eff D

The type system presented in Section 2.5 uses the eff D function in each inference rule to

compute the effect of a term. In order for the type system to be sound, eff D needs to meet the

following monotonicity requirement:

Lemma 2.1. Monotonicity.

For every effect domain D and every syntactic form TRM,

1. if ∀e ′i ∈ e ′,ei ∈ e.e ′i vD ei , then eff D(TRM,e ′) vD eff D(TRM,e), and

2. eff D(TRM,e1, . . . ,ei 1 tei 2, . . . ,en) vD eff D(TRM,e1, . . . ,ei 1, . . . ,en)tD ei 2

The first clause of the monotonicity lemma requires the eff D function to be monotonic in

the sub-effect relation vD . This means that given a term t of the form TRM, when replacing

one of its subterms ts with a subterm t ′s that has a smaller effect, the effect of t cannot grow.

21

Chapter 2. A Generic Framework for Polymorphic Effect-Checking

Implementing effect masking remains possible, as we show in the effect domain of exceptions.

The second part of the monotonicity lemma prevents the effect of a term to depend on

the presence of a certain effect in its subterms. This restriction falls in line with the “may”

semantics of the type-and-effect system explained in Section 2.1.1.

2.4 Combining Multiple Effect Domains

In order to check multiple kinds of effects at the same time, the effect lattices of each individual

domain are combined into one multi-domain effect lattice. The elements of this combined

lattice are tuples of effects from the individual domains:

E = {eD1 . . .eDn | eDi ∈ EDi }

The t, v and eff operations are defined element-wise using the respective operation for each

domain:

(e ′
D1 . . .e ′

Dn)t (eD1 . . .eDn) = (e ′
D1 tD1 eD1) . . . (e ′

Dn tDn eDn)

(e ′
D1 . . .e ′

Dn) v (eD1 . . .eDn) ⇐⇒ (e ′
D1 vD1 eD1)∧ . . .∧ (e ′

Dn vDn eDn)

eff (TRM,eD1 . . .eDn) = eff D1(TRM,eD1) . . . eff Dn(TRM,eDn)

The top and bottom elements are defined as >= (>D1 . . .>Dn) and ⊥= (⊥D1 . . .⊥Dn).

Deriving the Monotonicity Lemma 2.1 for the combined effect domain is straightforward given

monotonicity of each individual domain.

2.4.1 Annotating Multiple Effect Domains

When tracking effects from multiple domains the effect annotations on function types have to

declare an effect for every domain that is being checked. For instance, if there are three effect

domains D1, D2 and D3, a function type has the form T1
eD1 eD2 eD3=======⇒ T2.

Clearly this annotation scheme does not scale very well: effect annotations quickly become

long and are hard to maintain. When adding a new effect domain, the annotation in every

function type needs to be updated. Our system implements a simple solution to address this

problem: it is based on the observation that in many cases, function types have either no

effect, a small number of effects, or the topmost effect. To backup this claim we look at a few

examples:

• Higher-order function like map typically accept as argument a function that can have any

effect. Therefore, this argument is annotated with the topmost effect.

22

2.4. Combining Multiple Effect Domains

• The implementation of map itself is pure, there is no other effect than the effect of its

argument.

• Pure functions are extremely common, for instance many operations on immutable

datatypes are pure. The inference tool for JPure by Pearce [2011] found 40% of the

methods in the Java standard library to be pure with respect to state modifications.

Huang et al. [2012] show similar results for other libraries written in Java. Since Scala

encourages immutable data structures and a functional style, the amount of purity is

expected to be comparable or higher.

• Functions that do have side effects usually have effects in one or few effect-domains.

For instance, a random generator is non-deterministic, operations on mutable data

structures modify state, or functions from a file-API have IO-effects. In addition, these

functions might have exceptional behavior. However, it is rather uncommon to have

functions with side effects from many domains at the same time.

In order to simplify the multi-domain effect annotations we account for the above observa-

tions and introduce two specific effect annotations which, by definition, range over all effect

domains: > and ⊥. When used as such, the two annotations have the expected meaning:

>=>D1 . . . >DN , similarly for ⊥.

⊥

⊥>D1 ⊥>D2 ⊥>D3

D1 D2
D3

>⊥D3

>⊥D1
>⊥D2

>

⊥ e3

> e3

Figure 2.2: Effect Annotations in Multiple Domains

However, the crucial characteristic is that the multi-domain annotations can be combined with

concrete effect annotations from individual effect domains. For instance, the type T1
⊥ eDi===⇒ T2

denotes a function which may have effect eDi in the domain Di , but is pure in all other

domains. Similarly, combining the > annotation with concrete effects restricts the allowed

effect in certain domains. This behavior is illustrated in Figure 2.2, showing an example with

three effect domains.

23

Chapter 2. A Generic Framework for Polymorphic Effect-Checking

t ::= x variable
| t t application
| v value

v ::= (x : T) ⇒ t monomorphic abstraction
| (x : T) → t effect-polymorphic abstraction

T ::= T
e=⇒ T function type

| T
e−→ T effect-polymorphic function type

e ::= ⊥ eD | > eD | eD effect annotation
eD ::= eD eD | · concrete effects

Γ ::= x : T parameter context
f ::= ε | x polymorphism context

Figure 2.3: Language with Polymorphic Effects (LPE)

2.5 Static Semantics

This section presents a formalization of the effect system outlined in the previous section. It

extends the type system of STLCe introduced in Section 2.1 by adding effect-polymorphic

function types and subtyping. In Figure 2.3 we summarize the syntax of the formal language,

which we name LPE for “Lightweight Polymorphic Effects”.

As introduced in Section 2.2.2, there are two kinds of functions: ordinary, monomorphic

functions denoted using the double arrow ⇒, and effect-polymorphic functions denoted

with a simple arrow →. The two kinds of arrows appear in function abstraction terms and in

function types.

In a monomorphic function type T1
e=⇒ T2 the latent effect is described by e. The effect of an

effect-polymorphic function type T1
e−→ T2 consists of two parts: the annotated effect e and the

effect of its argument of type T1. Only higher-order functions, which are functions that take

another function as argument, can be effect-polymorphic. As explained in Section 2.5.2, this

invariant is checked by the typing rule T-ABS-POLY which enforces the parameter type T1 to

be a function type. The effect of the argument function is implicitly added to the total effect of

an effect-polymorphic function.

The default effects for function types without effect annotations are explained in Section 2.2.2:

T1 ⇒ T2 is a equivalent to T1
>=⇒ T2, and T1 → T2 is a equivalent to T1

⊥−→ T2.

2.5.1 Subtyping

The subtyping relation of our calculus is reflexive and transitive.

24

2.5. Static Semantics

S-REFL
T <: T

S-TRANS
T ′ <: S S <: T

T ′ <: T

The subtyping rules covering the two kinds of function types in our system are identically

structured.

S-FUN-MONO

T1 <: T ′
1 T ′

2 <: T2 e ′ v e

T ′
1

e ′
=⇒ T ′

2 <: T1
e=⇒ T2

S-FUN-POLY

T1 <: T ′
1 T ′

2 <: T2 e ′ v e

T ′
1

e ′
−→ T ′

2 <: T1
e−→ T2

In S-FUN-MONO, a function with a latent effect e ′ can only be a subtype of another function

with effect e if e ′ v e. As an example, we define a higher-order function that requires its

argument to be pure:

let pureHof = (f: Int
⊥=⇒ Int) ⇒ f 1

The subtyping rule will only allow pure functions to be passed into pureHof .

When comparing two effect-polymorphic function types in S-FUN-POLY, remember that we

defined previously the latent effect of T1
e−→ T2 to consist of two parts: the annotated effect e

plus the latent effect of the parameter type T1. This raises the question why the subtyping rule

for polymorphic function types only compares the annotated effects. Assume we have two

functions:

let maybePure: (Int
>=⇒ Int)

⊥−→ Int = ...

let pure: (Int
⊥=⇒ Int)

⊥−→ Int = ...

In general, an invocation of maybePure might have any effect, while an invocation of pure is

always pure. However, the subtyping relation seems to contradict this observation: due to

contra-variance of parameters, the type of maybePure is a subtype of the type of pure. To build

an intuition why the subtyping rule is correct, we take a closer look at the two function types.

The type of pure says: “Give me a pure function from Int to Int, and I compute a result without

producing a side effect.” For instance, in the body of a function m

let m = (pure: (Int
⊥=⇒ Int)

⊥−→ Int) ⇒ ...

the parameter function pure only accepts pure functions. Now assume that we use the function

maybePure where a function of the type of pure is expected, e.g.,

m maybePure

As explained before, this is allowed by the subtyping rules. The example shows that it is also

sound, because in the body of method m only pure functions will be passed into maybePure.

Due to effect-polymorphism, those invocations of maybePure have no effect.

25

Chapter 2. A Generic Framework for Polymorphic Effect-Checking

In other words, the type of the function maybePure says: “If you give me a pure function, I also

compute a result without producing a side effect!”

2.5.2 Typing Rules

Terms are assigned a type and an effect using a judgment of the form Γ; f ` t : T ! e where Γ

maps variables to their type. The additional environment variable f is used for type checking

effect-polymorphic methods. While its exact role is discussed later, remember for now that

it holds either a parameter x ∈ Γ, or the special value ε which is distinct from all parameter

names.

Referencing a parameter does not have a side effect:

T-VAR
x : T ∈ Γ

Γ; f ` x : T ! ⊥

Next, we look at the typing rules for monomorphic function abstraction and application.

T-ABS-MONO
Γ, x : T1;ε ` t : T2 ! e

Γ; f ` (x : T1) ⇒ t : T1
e=⇒ T2 ! ⊥

T-APP-MONO
Γ; f ` t1 : T1

e=⇒ T ! e1 Γ; f ` t2 : T2 ! e2 T2 <: T1

Γ; f ` t1 t2 : T ! eff (APP,e1,e2,e)

The typing rule for abstraction infers the result type T2 and the latent effect e of a function. By

using the value ε in the environment for type checking the function body, we propagate the

information that the term belongs to a monomorphic function.

The rule T-APP-MONO is a standard typing rule for function applications. The effects of the

subterms and the latent effect of the function are combined using the eff function introduced

in Section 2.3, which by default computes the join of its argument effects.

Before analyzing the typing rules for effect-polymorphic function abstractions and invocations,

we take a look at the functionality of the extended typing environment Γ; f .

Suppose we are analyzing the effect of a simple effect-polymorphic function

val hof = (f : Int
>=⇒ Int) → f 1

The computed type should be (Int
>=⇒ Int)

⊥−→ Int, i.e., the function hof itself has effect ⊥. The

effect of invoking f can be ignored because it is already expressed in the function type through

effect-polymorphism.

26

2.5. Static Semantics

To achieve this special treatment of the argument function, the parameter f is placed in the

extended environment as Γ; f when type checking the function body of an effect-polymorphic

function.

T-ABS-POLY
T1 = Ta

e1=⇒ Tb Γ, f : T1; f ` t : T2 ! e

Γ; f ′ ` (f : T1) → t : T1
e−→ T2 ! ⊥

Note that the typing rule forces the argument type T1 to be a monomorphic function type, since

only higher-order functions can be effect-polymorphic. We later explain why the argument

function can only be monomorphic.

The following typing rule T-APP-PARAM implements the mentioned special treatment of the

argument function f :

T-APP-PARAM
f : T1

e=⇒ T ∈ Γ Γ; f ` t : T2 ! e2 T2 <: T1

Γ; f ` f t : T ! eff (APP,⊥,e2,⊥)

When applying a function f which is the parameter of an enclosing effect-polymorphic

function, the latent effect of f is not taken into account.

The last element of the static semantics is the typing rule for invocations of effect-polymorphic

functions.

T-APP-POLY
Γ; f ` t1 : T1

e−→ T ! e1 Γ; f ` t2 : T2 ! e2 T2 <: T1

Γ; f ` t1 t2 : T ! eff (APP,e1,e2,e t latent(T2))

There is a single but crucial difference between the this rule and the rule T-APP-MONO for

monomorphic function applications. The latent effect of the function t1 now consists of two

components: the concrete effect e annotated in the function type, and the latent effect of the

argument function t2 which is computed using latent(T2).

The rule T-APP-POLY plays a central role in the effect-polymorphic type system: it computes

the effect of the actual argument type T2 for each invocation of t1. Through subtyping this

effect might be smaller than the effect of the function’s parameter type T1.

The parameter type T1 is known to be a monomorphic function type: this is enforced by the

typing rule T-ABS-POLY. Since T2 <: T1, we know that also T2 is a monomorphic function type.

Therefore, the auxiliary function computing the latent effect is simply defined as

latent(T1
e=⇒ T2) = e

The reason why only monomorphic functions are allowed as parameters of effect-polymorphic

27

Chapter 2. A Generic Framework for Polymorphic Effect-Checking

t ::= . . .
| throw(p) throwing an exception
| try t catch(p) t catching and handling exceptions

T ::= . . .
| Nothing bottom type

eD ::= . . .
| throws(p) exception effect annotation

p ::= p1 | . . . | pn exceptions

Figure 2.4: Extended Syntax for LPE with Exceptions

functions is that the typing rules become simpler without decreasing the expressiveness.

Imagine that a polymorphic function takes another polymorphic function as argument:

val highHof = (f : (Int ⇒ Int) → Int) → f ((x: Int) ⇒ x + 1)

When looking at the type of highHof , the information that its argument f is applied to a

pure is not represented in the signature. Therefore, there is no advantage in allowing effect-

polymorphic functions as arguments.

Enforcing parameter types of effect-polymorphic functions to be monomorphic function

types slightly simplifies the soundness proof for the type system. However, we assume that

lifting this restriction would not render the type system unsound.

2.6 Examples of Concrete Effect Domains

This section presents two extensions of the core calculus that implement effect checking

for concrete effect domains. Both extensions are orthogonal to the mechanisms for effect-

polymorphism in the base language. Every concrete effect system that is added to the frame-

work profits from effect-polymorphism without any additional effort: the extensions would be

exactly the same in a monomorphic effect checking framework.

2.6.1 Exceptions

In order to add effect checking for exceptions, we first extend the base language with primitives

that express the throwing and handling of exceptions. The additions to the language syntax

are presented in Figure 2.4. We use a finite set of exceptions p1 . . . pn that can be thrown and

caught, however the system could be easily extended to an open hierarchy of effects such as

the exception types in languages like Scala or Java. An effect annotation throws(p) denotes

that any of the exceptions in p might be thrown. The effect lattice for the exception domain E

28

2.6. Examples of Concrete Effect Domains

is defined in Figure 2.5.

EE = {
throws(p) | p ⊆ {

p1, . . . , pn
}}

throws(p) vE throws(q) ⇐⇒ p ⊆ q
⊥E = throws() throws(p) tE throws(q) = throws(p ∪ q)
>E = throws(p1, ..., pn)

Figure 2.5: Effect Lattice for Exceptions

To give a valid type to the throw primitive, we introduce the bottom type Nothing which is a

subtype of every other type.

S-NOTHING
Nothing <: T

The typing rules for the two new syntactic forms are defined as follows:

T-THROW
Γ; f ` throw(p) : Nothing ! eff (THROW(p))

T-TRY

Γ; f ` t1 : T1 ! e1 T1 <: T et = eff (TRY,e1)
Γ; f ` t2 : T2 ! e2 T2 <: T e = eff (CATCH(p),et ,e2)

Γ; f ` try t1 catch(p) t2 : T ! e

Note that the type system for LPE does not have a subsumption rule. As noted in [Pierce, 2002,

Chapter 16.4], adding a bottom type to such a type system requires an additional inference

rule for function invocations when the function term is erroneous.

T-APP-E
Γ; f ` t1 : Nothing ! e1 Γ; f ` t2 : T2 ! e2

Γ; f ` t1 t2 : Nothing ! eff (APP,e1,e2,⊥)

Finally, to complete the description of the new effect domain we have to inform the framework

that throw expressions can add effects, while try expressions can mask effects. This is achieved

by defining the function eff E :

eff E (THROW(p)) = throws(p)

eff E (TRY,e) = e

eff E (CATCH(p),e1,e2) = throws((q \ p)∪ s) where e1 = throws(q)

e2 = throws(s)

Monotonicity of eff E

To ensure soundness of the effect domain we need to show that the monotonicity Lemma 2.1

holds for the definition of eff E given above.

29

Chapter 2. A Generic Framework for Polymorphic Effect-Checking

Proof (Monotonicity for eff E). For terms of the form TRY the function eff E is equivalent to the

default eff D for which monotonicity is straightforward. In the case of THROW(P), eff E does

not take any arguments, so monotonicity holds trivially. It remains to show monotonicity of

eff E for terms of the form CATCH(p).

For the first clause of the monotonicity lemma we need to show that e ′q vE eq∧e ′s vE es implies

eff E (CATCH(p),e ′q ,e ′s) vE eff E (CATCH(p),eq ,es). If we take e ′q = throws(q ′), e ′s = throws(s′),

similarly for eq and es , and expand the definitions of eff E and vE we obtain the goal

(q ′ \ p)t s′ ⊆ (q \ p)t s

which can be shown using basic set theory.

For the second clause we need to show

eff E (CATCH(p),eq1 tE eq2,es) vE eff E (CATCH(p),eq1,es)tE eq2 and

eff E (CATCH(p),eq ,es1 tE es2) vE eff E (CATCH(p),eq ,es1)tE es2

We define eq1 = throws(q1), es = throws(s), etc., and obtain by expanding eff E and vE

((q1 ∪q2) \ p)∪ s ⊆ (q1 \ p)∪ s ∪q2 and

(q \ p)∪ (s1 ∪ s2) ⊆ (q \ p)∪ s1 ∪ s2

which are again straightforward to show.

2.6.2 Asynchronous Operations

Most popular programming languages, including C# [Hejlsberg, 2010], F# [Syme et al., 2011],

Scala [Haller et al., 2012] and Java [Lea, 2000], support constructs to start asynchronous

computations and returning a “future”, i.e., a handle that allows to retrieve the result once the

computation completes. For example in Scala, an asynchronous computation can be started

as follows:

val f = future {
// potentially long-running computation

}

When using the handle f to retrieve the result, the current thread blocks until the value is

computed, or an unhandled exception is thrown:

val r = Await.result(f, Duration.Inf)

30

2.6. Examples of Concrete Effect Domains

t ::= . . .
| future t asynchronous expression
| block blocking expression
| blocking t delimiting blocking expression

eD ::= . . .
| B | noB blocking / non-blocking effect annotation

Figure 2.6: Extended Syntax for LPE with Exceptions

For efficiency the runtime environment typically uses a thread pool for executing the body of

a future instead of creating a new thread [Lea, 2000]. However, when running on a fixed-size

thread pool, calling blocking operations within the body of the future is problematic: it may

lead to starvation and, in the worst case, even to a deadlock of the entire thread pool [Haller

and Odersky, 2009]. Blocking occurs for example when awaiting the result of a future or when

performing synchronous IO.

The API documentation for the ForkJoinTask class in the Java standard library [Oracle, 2013a]

clearly states this restriction:

“Computations should avoid synchronized methods or blocks, and should mini-

mize other blocking synchronization [. . .]. Tasks should also not perform blocking

IO [. . .]”

In order to use a potentially blocking operation within a future, the programmer has to wrap it

so that the runtime system can temporarily re-size the thread pool if necessary. In Scala this is

written as follows:

val f = future {
blocking {
// potentially blocking code

}
}

Using a specific effect system it is possible to enforce wrapping of potentially blocking oper-

ations within futures at compile-time. This eliminates an entire class of concurrency errors

when using thread pools. The additions to the language syntax are presented in Figure 2.6. For

simplicity there is only a single blocking expression block; in practice, many more expressions

would be potentially blocking, e.g., functions for synchronization or blocking IO. The future t

expression asynchronously runs expression t which must be non-blocking, i.e., pure in this

effect system. The blocking t expression wraps a potentially blocking expression t masking

the effect of the wrapped expression.

31

Chapter 2. A Generic Framework for Polymorphic Effect-Checking

The fact that an expression is blocking is denoted by the effect annotation B. The effect lattice

is equivalent to the one for IO effects presented in Section 2.1.2, therefore its definition is

omitted.

The typing rules for the three new syntactic forms are defined as follows:

T-FUTURE
Γ;ε ` t : T ! e e = noB

Γ; f ` future t : T ! eff (FUTURE,e)

T-BLOCK
Γ; f ` block : T ! eff (BLOCK)

T-BLOCKING
Γ; f ` t : T ! e

Γ; f ` blocking t : T ! eff (BLOCKING,e)

The typing rule T-FUTURE enforces the term t to be non-blocking by requiring its effect to be

noB. To complete the description of the new effect domain we define the eff B as:

eff B(FUTURE,e) = e

eff B(BLOCK) = B

eff B(BLOCKING,e1) = noB

The eff B function expresses the fact that block expressions add a blocking effect, while

blocking expressions mask a blocking effect.

2.7 Dynamic Semantics

In order to model the runtime behavior of LPE, we define a big-step operational semantics.

A term t reduces in one step to either a value v or an error throw(p), written t ↓ 〈r,S〉 where

r ::= v | throw(p). The set S contains the effects that occurred while evaluating the term. Every

element e ∈ S is an atomic effect, i.e., S ⊆ E where E is the multi-domain effect lattice defined

in Section 2.4.

2.7.1 Extensible Effect Domains

Similar to the typing judgments, the evaluation rules are parametrized by an auxiliary function

dynEff which computes the effect of evaluating a term based on the effects of its subterms.

It is closely related to function eff , but it operates on sets of effects instead of atomic effects.

The reason is that in contrast to the static semantics, the operational semantics does not

approximate the occurrence of two distinct atomic effects by their join, but keeps both effects

in the resulting set S.

32

2.7. Dynamic Semantics

By default the dynEff D function for an effect domain D joins its argument effect sets:

dynEff D(∗,S) =⋃
i

Si

In the case of exceptions, the function dynEff E is defined as follows:

dynEff E (THROW(p)) = {throws(p)}

dynEff E (TRY,S) = S

dynEff E (CATCH(p),S1,S2) = (S1 \ {throws(pi) | pi ∈ p})∪S2

The actual dynEff function used in the dynamic semantics works on the multi-domain effect

lattice introduced in Section 2.4. Remember that each set of dynamic effects is a subset of

the multi-domain effect lattice, S ⊆ E = {eD1 . . .eDn | eDi ∈ EDi }. In order to invoke the domain-

specific dynEff D functions the tuples in this set need to be projected to the corresponding

domain:

dynEff (TRM,S) = {eD1 . . .eDn | eDi ∈ dynEff Di (TRM,proji (S))}

where proji (S) = {eDi | (eD1 . . .eDn) ∈ S}.

In order for the type system to be sound, the eff function needs to model dynEff conservatively

and correctly. This requirement is explained in Section 2.8.1.

2.7.2 Evaluation Rules

When evaluating an application, if one of the two terms evaluates to throw(p) for some excep-

tion p, then so does the entire expression.

E-APP-E1

t1 ↓ 〈throw(p),S1〉
S = dynEff (APP,S1,;,;)

t1 t2 ↓ 〈throw(p),S〉 E-APP-E2

t1 ↓ 〈v1,S1〉 t2 ↓ 〈throw(p),S2〉
S = dynEff (APP,S1,S2,;)

t1 t2 ↓ 〈throw(p),S〉

In the evaluation rule for applications, we write [v/x]t for the term t with all occurrences

of the variable x replaced by value v . We use the special arrow 7→ to range over both, effect-

polymorphic and monomorphic functions.

E-APP

t1 ↓ 〈(x : T) 7→ t ,S1〉 t2 ↓ 〈v2,S2〉
[v2/x]t ↓ 〈r,Sl 〉 S = dynEff (APP,S1,S2,Sl)

t1 t2 ↓ 〈r,S〉

A throw expression does not evaluate, but the evaluation rule still computes the set of dynamic

effects of the expression.

33

Chapter 2. A Generic Framework for Polymorphic Effect-Checking

E-THROW
S = dynEff (THROW(p))

throw(p) ↓ 〈throw(p),S〉

The evaluation of a try-catch expression depends on the result obtained for the first subterm

t1. In case it evaluates to an error throw(p) and the exception p is handled by the catch clause,

then the final result is the evaluation of the handler t2.

E-TRY-E

t1 ↓ 〈throw(p),S1〉 p ∈ p
t2 ↓ 〈r2,S2〉 St = dynEff (TRY,S1)

S = dynEff (CATCH(p),St ,S2)

try t1 catch(p) t2 ↓ 〈r2,S〉

The last evaluation rule applies to try-catch expressions in which the evaluation of t1 either

does not raise an exception, or it raises an exception that is not handled by the catch(p) clause.

In this case, the obtained result r1, which might be an error, is propagated.

E-TRY
t1 ↓ 〈r1,S1〉 S = dynEff (TRY,S1)

try t1 catch(p) t2 ↓ 〈r1,S〉

2.8 Effect Soundness

In this section we state two important theorems for the soundness of the type system presented

in Section 2.5.2 with respect to the dynamic semantics introduced in the previous section.

In the static semantics, every expression has an effect e, while in the dynamic semantics, the

evaluation of an expression yields a set of effects S. For notational convenience, we write S ¹ e

to express that every effect in S is smaller than e, i.e., ∀es ∈ S . es v e.

Theorem 2.1. Preservation.

If Γ; f ` t : T ! e is a valid typing statement for term t and the term evaluates as t ↓ 〈r,S〉, then

there is a valid typing statement Γ; f ` r : T ′ ! e ′ for r with T ′ <: T .

Theorem 2.2. Effect soundness.

If Γ; f ` t : T ! e is a valid typing statement for term t and the term evaluates as t ↓ 〈r,S〉, then

S ¹ e t latent(Γ(f)).

The effect soundness theorem states that every effect that occurs when evaluating a term

t is represented in the typing derivation for t . Remember that in the typing rule for effect-

polymorphic functions, T-ABS-POLY, the argument function f is propagated in the extended

environment Γ; f . Invocations of f are thereafter treated as pure by typing rule T-APP-PARAM.

Therefore, given a typing statement Γ; f ` t : T ! e, the effect that might occur when evaluating

t consists of e and the latent effect of f , latent(Γ(f)).

34

2.8. Effect Soundness

2.8.1 Consistency Requirement

In both semantics, we use an auxiliary function to compute the effect that occurs when

evaluating a term. The preservation and soundness theorems are based on the assumption

that the static eff function conservatively models the behavior of the dynEff function in the

operational semantics.

This requirement is expressed through the following consistency lemma, which has to be

verified for every effect domain.

Lemma 2.2. Consistency.

For every syntactic form TRM, list of dynamic effects S, list of static effects e and typing

environment Γ; f ,

if ∀i .Si ¹D ei tD latent(Γ(f)) then dynEff D(TRM,S) ¹D eff D(TRM,e)tD latent(Γ(f)).

Proof (Consistency for dynEff D). For the default dynEff D and eff D functions we obtain

S = dynEff D(∗,S) =⋃
i

Si (1)

e = eff D(∗,e) =⊔
i

Dei (2)

The goal is to show S ¹ etD latent(Γ(f)), which is equivalent to ∀es ∈ S.es vD etD latent(Γ(f)).

es ∈ S ⇐⇒ ∃i .es ∈ Si by (1)

=⇒∃i .es vD ei tD latent(Γ(f)) by precondition Si ¹D ei tD latent(Γ(f))

=⇒ es vD e tD latent(Γ(f)) by (2)

Proof (Consistency for dynEff E). For the domain of exceptions, the case THROW(p) is trivial,

and the case TRY is covered by the default case shown above. For terms of the form CATCH(p)

we obtain

S = dynEff E (CATCH(p),S1,S2) = (S1 \ {throws(pi) | pi ∈ p})∪S2 (1)

e = eff E (CATCH(p),throws(q),throws(s)) = throws((q \ p)∪ s) (2)

The preconditions of the consistency lemma are

∀es ∈ S1.es vE throws(q)tE latent(Γ(f)) (3)

∀es ∈ S2.es vE throws(s)tE latent(Γ(f)) (4)

The goal is to show ∀es ∈ S.es v e t latent(Γ(f)). Since S is a union of two sets there are two

cases, from which we investigate the more challenging one. In step (5) we exploit the fact that

dynamic effects es ∈ S are atomic. In the case of exceptions this means that es has the form

throws(ps) where ps is a single exception.

35

Chapter 2. A Generic Framework for Polymorphic Effect-Checking

es ∈ S1 \ {throws(pi) | pi ∈ p}

=⇒ es ∈ S1 ∧es = throws(ps)∧ps ∉ p (5)

=⇒ es vE throws(q)tE latent(Γ(f)) by (3)

=⇒ es vE throws(q \ p)tE latent(Γ(f)) since ps ∉ p

=⇒ es vE throws((q \ p)∪ s)tE latent(Γ(f)) weakening

Multiple Domains The consistency lemma holds for the multi-domain dynEff function

introduced in Section 2.7.1, given consistency of dynEff D for individual domains. The proof is

straightforward and therefore omitted.

2.8.2 Soundness Proofs

This section sketches the proof for the soundness theorem. The full proofs for preservation

and soundness can be found in Appendix A.

In addition to preservation, the proof for soundness uses a lemma showing that effects are

preserved in typing statements under value substitution. This lemma comes in two flavors:

for monomorphic and effect-polymorphic abstractions.

Lemma 2.3. Preservation under substitution for monomorphic abstractions.

If Γ, x : T1; f ` t : T ! el , f 6= x and Γ; g ` v : T2 ! ⊥ with T2 <: T1,

then Γ; f ` [v/x]t : T ′ ! e ′l such that T ′ <: T and e ′l v el .

Lemma 2.4. Preservation under substitution for polymorphic abstractions.

If Γ, x : T1; x ` t : T ! el and Γ; g ` v : T2 ! ⊥ with T2 <: T1,

then Γ;ε ` [v/x]t : T ′ ! e ′l such that T ′ <: T and e ′l v el t latent(T2).

The two lemmas state that the type and the effect of term t decrease when a free variable in t

is replaced by a value with a conforming type.

Proof (soundness for invocations of polymorphic functions). The proof of Theorem 2.2 is car-

ried out using induction on the evaluation rules for a term t . We look at the most interesting

case E-APP that produces the following derivations:
t = t1 t2

t1 ↓ 〈(x : T ′
1) 7→ t11,S1〉

t2 ↓ 〈v2,S2〉
[v2/x]t11 ↓ 〈r,Sl 〉
S = dynEff (APP,S1,S2,Sl)

36

2.9. Conclusion

There are multiple typing rules for type checking an application expression. We investigate

the key case T-APP-POLY and obtain the following sub-derivations:

Γ; f ` t1 : T1
el−→ T ! e1

Γ; f ` t2 : T2 ! e2

T2 <: T1

e = eff (APP,e1,e2,el t latent(T2))

The goal is to show that in environment Γ; f , the static effect e correctly approximates the

dynamic effects S, i.e., S ¹ e t latent(Γ(f)).

We see that t1 evaluates to a function abstraction. The preservation theorem states that the

type of this resulting function is a subtype of t1’s original type T1
el−→ T . Since the value is a

function abstraction, the subtyping rules restrict the type to be a polymorphic function type.

Looking at the canonical forms, we observe that the value can only be a polymorphic function

abstraction (x : T ′
1) → t11, and we obtain the following typing derivation:

Γ, x : T ′
1; x ` t11 : T ′ ! e ′l with T1 <: T ′

1, T ′ <: T and e ′l v el

Applying preservation to the term t2, we obtain v2 : T ′
2 with T ′

2 <: T2. Using transitivity of

subtyping, we obtain T ′
2 <: T ′

1 and apply the substitution Lemma 2.4 to obtain

Γ;ε ` [v2/x]t11 : T ′′ ! e ′′l with T ′′ <: T ′ and e ′′l v e ′l t latent(T ′
2)

By applying the induction hypothesis on the subterm [v2/x]t11, we obtain
Sl ¹ e ′′l t latent(Γ(ε))

Sl ¹ e ′l t latent(T ′
2) by e ′′l v e ′l t latent(T ′

2) and latent(Γ(ε)) =⊥

Since T ′
2 <: T2 we can easily verify that latent(T ′

2) v latent(T2). Together with the induction

hypotheses on t1 and t2, we now have the necessary conditions to apply the consistency

Lemma 2.2:
S1 ¹ e1 t latent(Γ(f))

S2 ¹ e2 t latent(Γ(f))

Sl ¹ el t latent(T2)

We obtain the desired result:

dynEff (APP,S1,S2,Sl) ¹ eff (APP,e1,e2,el t latent(T2))t latent(Γ(f))

2.9 Conclusion

In this chapter we presented an extensible framework for polymorphic effect checking where

multiple effect domains can be integrated modularly. As discussed in Section 1.3.1, the closest

existing work related to this framework is the generic effect system by Marino and Millstein

[2009]. Our system introduces a lightweight syntax for denoting effect-polymorphic functions

and shows that the treatment of effect-polymorphic functions is sound and independent of

37

Chapter 2. A Generic Framework for Polymorphic Effect-Checking

specific effect domains.

The effect system has certain limitations in expressiveness which are due to the simplistic

annotation scheme for effect-polymorphic functions. Concretely, effect inference can be

imprecise when the system is used either for curried functions, for functions with multiple

parameters or in object-oriented programming languages where argument objects hold a

large number of member methods. These issues are discussed and addressed in the next

chapter.

38

Chapter 3

Dependent Types for Relative Effects
Declarations

This chapter describes a type-and-effect system for lightweight effect-polymorphism which

generalizes the type system of LPE presented in Chapter 2. The system in this chapter unifies

the function types for effect-polymorphic and monomorphic functions into a single kind of

function type.

Effect-polymorphism is expressed using relative effect annotations on function types: each

function declares a list of parameters which contribute to its effect. For instance, the type

(f : T → T) −→
f

T describes a higher order function which has exactly the effect of its argument

function f .

For functions with multiple arguments, relative effect annotations allow programmers to de-

fine precisely in which of its arguments the function is effect-polymorphic. Methods that take

multiple functions as arguments are ubiquitous in object-oriented languages: every object

passed as argument to a method carries a potentially large number of member methods. Rela-

tive effect annotations are a lightweight way to express effect-polymorphism that integrates

well with object-oriented languages. Specifically, annotating a method as effect-polymorphic

does not require changes to the parameter type. For example, the signature of a higher-order

method is written “(f: T => T): T @pure(f)”, which states that the method is pure up to the

effect of its parameter f. The parameter type “T => T” would be the same if the higher-order

method was not polymorphic.

We implemented the type system with relative effect declarations for Scala in the form of a

compiler plugin and applied it to the Scala collections library which makes extensive use of

higher-order functions and effect-polymorphism.

39

Chapter 3. Dependent Types for Relative Effects Declarations

3.1 Overview

In object-oriented programming languages every object carries a potentially large number of

methods, which naturally leads to higher-order programming patterns. In his essay explaining

differences between objects and data types, William R. Cook [2009] notes that

“the typical object-oriented program makes far more use of higher-order values

than many functional programs.”

In the type system of the LPE language described in Chapter 2, methods are marked as either

effect-polymorphic or not. When applying this type system to an object-oriented language,

we need to define what it means for a function to be effect-polymorphic in its arguments. One

possibility is to define that an effect-polymorphic function with a parameter o has the effect

of a specific member method of object o, for instance o.apply. However, this solution is not

flexible enough in practice: there are many examples of effect-polymorphic functions where

the effect depends on a different member than apply, as we will see later in this section.

A different solutions is to define that an effect-polymorphic function has the effect of all

member methods of the function’s parameters. In many situations this coarse annotation

system is problematic:

def m(a: A, f: A => B): B @effPoly = f(a)

If method m is marked effect-polymorphic, then each invocation of m implicitly has the effect

of function f, but also the effect of all members of object a. The signature of method m does

not reveal that no methods of a are invoked.

To overcome this issue we could define that effect-polymorphism only applies to parameters

that have a function type. However, this solution is unsystematic and there are many examples

of effect-polymorphism where the parameter type is not a function. For example, the method

println has the IO effect and the effect of invoking toString on its argument. The argument

object is typically not a function, it can be of any type.

Another limitation of LPE is that it cannot express effect-polymorphism of curried functions:

functions can only be polymorphic in their own parameter, but not in a parameter of an outer

function. Curried functions are not common in Scala because methods may have multiple

parameters, however the same issue appears in the form of nested definitions:

def m(f: () => A): A @effPoly = {
def nested(): A /* @effPoly-in-f */ = f()
nested()

}

40

3.2. Formalization

This pattern is common in the implementation of the Scala collections library as show in

Section 3.3.3.

3.1.1 Relative Effect Declarations

Relative effect annotations represent a clean solution to the limitations outlined above while

remaining syntactically lightweight and easy to understand for programmers.

Like in the type system for LPE, each function type specifies the effects that may occur when

the function is invoked, e.g., IO or raised exceptions. In this chapter, that effect is called

the concrete effect of the function. In addition to the concrete effect, each function type

specifies a relative effect in the form of a list of parameters. Relative effects are expanded at

call site according to the type of the argument that is passed for a parameter. For example, the

higher-order method m from the previous example is annotated as follows:

def m(f: () => A): A @pure(f) = {
def nested(): A @pure(f) = f()
nested()

}

The methods m and nested both have a relative effect f and no concrete effect. As we explain in

Section 3.3.1, the relative effect f is an abbreviation for f.apply. To annotate a method which

is effect-polymorphic in a specific member of its parameter, the relative effect annotation

takes the form of a method selection:

def println(o: Any): Unit @pure(o.toString) @io = { ... }

Before explaining the integration of relative effects into Scala in Section 3.3, the following

section introduces a formal definition of the type system with relative effects and examines

the subtyping and typing rules.

3.2 Formalization

The type system with relative effect annotations is formalized using a language called REL

which is presented in Figure 3.1. REL is based on LPE, the language with lightweight polymor-

phic effects from Chapter 2. It uses the the same multi-domain effect lattice as LPE, which is

described in Section 2.4.

The REL language differs from LPE only in the way it expresses effect-polymorphism. Instead

of using a dedicated type for effect-polymorphic functions, it introduces relative effect anno-

tations on function types. A function type has the form (x : T)
e−→
x

T where e is the concrete

effect of the function. A relative effect annotation f ∈ x is a reference to the parameter f and

41

Chapter 3. Dependent Types for Relative Effects Declarations

t ::= x variable
| t t application
| v value

v ::= (x : T) −→
x

t function abstraction

T ::= (x : T)
e−→
x

T function type

e ::= ⊥ eD | > eD | eD effect annotation
eD ::= eD eD | · concrete effects

Γ ::= x : T parameter context

Figure 3.1: Language with Relative Effect Annotations (REL)

expresses the fact that the function is effect-polymorphic in f . For example, the function type

(f : Int→ Int) −→
f
Int describes a higher-order function which is polymorphic in the effect of

its argument f .

Because annotations for effect-polymorphism are references to parameters, the parameter

names have to be retained in function types. This implies that the type system of REL uses

dependent function types, however it is a restricted form of dependent types in which a type

can only depend on a term in its relative effect annotations.

The system admits two syntactic simplifications. First, parameter names that do not appear

in any relative effect annotation can be omitted, so that for example Int→ Int is equivalent

to (x : Int) → Int for some name x. Second, similar to the types of LPE, effect annotations on

function types can be omitted in which case the following default effects are used:

• Monomorphic function types are impure by default: T1 → T2 is equivalent to T1
>−→ T2

• Effect-polymorphic function types are pure by default: if f is non-empty then T1 −→
f

T2

is equivalent to T1
⊥−→
f

T2

3.2.1 Subtyping

The subtyping rules for REL presented in Firgure 3.2 are computed with respect to an envi-

ronment Γ which maps variables to their types. The rules for reflexivity and transitivity are

standard. We discuss the subtyping rule for function types in more detail.

For the parameter types the subtyping rule S-FUN is standard, the two types are compared in

contravariant fashion. The following two subsections explain how the latent effects and the

result types are compared.

42

3.2. Formalization

Γ ` T ′ <: T S-REFL
Γ ` T <: T

S-TRANS
Γ ` T ′ <: S Γ ` S <: T

Γ ` T ′ <: T

S-FUN

Γ ` T1 <: T ′
1 Γ, x : T1 ` (e ′, [x/x ′]x ′) ¹ (e, x) Γ, x : T1 ` [x/x ′]T ′

2 <: T2

Γ ` (x ′ : T ′
1)

e ′
−→
x ′

T ′
2 <: (x : T1)

e−→
x

T2

Γ ` (e ′, x ′) ¹ (e, x) e ′ v e ∀ f ∈ x ′.Γ ` f ¹ (e, x)

Γ ` (e ′, x ′) ¹ (e, x)

f ∈ x

Γ ` f ¹ (e, x)

Γ(f) = (y : Ta)
ey−→
y

Tb y ∉ x Γ, y : Ta ` (ey , y) ¹ (e, x)

Γ ` f ¹ (e, x)

[x/x ′]T T = (y : T1)
ey−→
y

T2 y ∉ {x, x ′}

[x/x ′]T = (y : [x/x ′]T1)
ey−−−−−→

[x/x ′]y
[x/x ′]T2

[x/x ′]x
[x/x ′]x = y where yi =

{
x if xi = x ′

xi otherwise

Figure 3.2: Subtyping for REL

Comparing Effects

The effect of a function type consists of two components: a concrete effect e and a list of

relative effects x. The relation (e ′, x ′) ¹ (e, x) compares the effects of two function types: the

concrete effect e ′ has to be a sub-effect of the effect e and each relative effect f ∈ x ′ has to

conform to the effect pair of the supertype f ¹ (e, x).

There are two possibilities for a relative effect f to conform to the effect pair (e, x): either f

exists as a relative effect in x, i.e., f ∈ x, otherwise the expansion of the relative effect f has to

conform to (e, x). The expansion of a relative effect f is simply the effect pair of the function

type of f in Γ. The parameter name y in the type of f has to be distinct from the relative effects

in x, which can be ensured by applying α-renaming if necessary.

Note that for each concrete effect in the subtype, an equivalent concrete effect is required

in the supertype. A concrete effect in the subtype cannot conform to a relative effect in the

43

Chapter 3. Dependent Types for Relative Effects Declarations

supertype, as illustrated by the following example:

· ` (f : T
e−→ T)

e−→ T <: (f : T
e−→ T) −→

f
T does not hold

The function type on the left always has effect e, irrespective of the function it receives as

argument. The function type on the right guarantees purity in the case a pure function is

passed as argument. Indeed the subtype test fails when comparing the effects of the two

functions: (e, ·) 6¹ (⊥, f).

When comparing function types with matching relative effects, the subtyping rule does not

take the expansion of these relative effects into account, even though they might differ:

· ` (f : T
>−→ T) −→

f
T <: (g : T

e−→ T) −→
g

T

This example is equivalent to the one illustrating the subtyping rules of LPE in Section 2.5.1.

The parameter types conform since they are checked in contravariant order. The effects of the

two function types are compared as

g : T
e−→ T ` (⊥, [g / f] f) ¹ (⊥, g) ⇐⇒ g : T

e−→ T ` (⊥, g) ¹ (⊥, g)

The subtyping statement therefore holds, which might seem surprising: the subtype is a

function which might have arbitrary effects, while the supertype is a function with at most

effect e. The explanation is the same as in Section 2.5.1: it is safe to use a function of the

subtype in places where a function of the supertype is expected.

As a last example, we illustrate how a relative effect in the subtype can conform to a concrete

effect in the supertype:

· ` (f : T → T)
⊥−→ (T −→

f
T) <: (g : T

e−→ T)
⊥−→ (T

e−→ T)

When comparing the two result types the parameter f is replaced by g in the subtype, as

discussed in the next section on subtyping dependent function types. We obtain the following

sub-derivation for their effects:

g : T
e−→ T ` (⊥, g) ¹ (e, ·)

For the relative effect g in the sub-effect there is no corresponding relative effect in the super-

effect. Therefore, the effect of g is expanded according to the environment to (e, ·), and we

obtain the derivation

g : T
e−→ T ` (e, ·) ¹ (e, ·)

which trivially holds. It might again seem surprising that the subtyping relation holds: the

subtype can return a function with a potentially larger effect than the supertype. The situation

44

3.2. Formalization

can be explained very similarly as in the previous example: when the subtype is used in place

of the supertype, the effect of the parameter function g is restricted to e, so the resulting

function can only have effect e.

A simpler, but unsound strategy The subtyping rule presented in this section first compares

relative and concrete effects separately and then expands relative effects only in the subtype,

but never in the supertype. A simpler strategy to compare the effects of two function types

would be to directly expand all relative effects. However, this strategy is unsound, as illustrated

by the following example: assume function h has type (f : Int → Int) −→
f
Int, hence, the

invocation h ((x : Int) → x) type checks as pure. The following (incorrect) implementation of

function h would throw an exception on every invocation, even if the argument function is

pure:

let h = (f : Int → Int) −→
f

let g = (m: Int −→
f

Int) −→
f

m 1

g ((x: Int) → throw e)

The subtyping rules presented in Figure 3.2 correctly reject the invocation of g : the argument

type Int
throws e−−−−−−→ Int does not conform to g ’s parameter type Int−→

f
Int because the effects do

not match: (throws e, ·) 6¹ (⊥, f).

A modified subtyping rule for function types which expands all relative effects would accept the

invocation of function g . The parameter of g requires the effect f which would be expanded

to >. The effects would be compared as “throws ev>” and the invocation would type check,

which shows that the modified rule is unsound.

Subtyping Dependent Function Types

The support for dependent types increases the complexity of subtyping for function types

because in each function type, the result type can refer to the function’s parameter. When

comparing two function types, it is necessary to unify the two parameters so that references

which appear in the two result types are treated as equivalent.

Type systems with dependent types and subtyping have been studied by Aspinall and Com-

pagnoni [1996]. Our subtyping rule S-FUN is conceptually equivalent to the rule for function

types in their work.

In order to compare the two result types T ′
2 and T2, the variable environment is extended by

x, the parameter of the supertype. All occurences of x ′, the parameter of the subtype, are

eliminated from the result type T ′
2 and replaced by the other parameter, so the rule compares

the result types as [x/x ′]T ′
2 <: T2. The substitution [x/x ′]T requires the parameter name y of

45

Chapter 3. Dependent Types for Relative Effects Declarations

the function type T to be distinct from x and x ′, which is ensured by applying α-renaming if

necessary.

Note that by contravariance of the parameter types, the type of x, the parameter in the

supertype, is a subtype of the type of x ′. For instance, if the parameters have function types,

the function x has an effect which is smaller than or equal to the effect of x ′. When comparing

the result types, the typing rule substitutes x for x ′ and therefore uses the parameter type

with the more precise type. The following example illustrates why this decision is correct and

shows that the opposite, using the variable x ′ with a less precise type, leads to an unnecessarily

restrictive subtyping rule.

· ` (f : T → T)
⊥−→ (T −→

f
T) <: (g : T

e−→ T)
⊥−→ (T

e−→ T)

Intuitively, this subtyping relation should hold because it is safe to use a function with the type

on the left in places where the type on the right is expected. The supertype allows passing a

function with effect e as argument and it returns a function with at most effect e. The subtype

satisfies these constraints: it accepts as argument functions with effect e and in this case also

returns a function with at most effect e.

The subtyping rule starts by comparing the parameter types and the effects: T
e−→ T <: T → T

holds since the default effect for monomorphic functions is > and both function are pure.

Next the result types are compared as follows:

g : T
e−→ T ` [g / f](T −→

f
T) <: (T

e−→ T)

This subtype test produces the effect check

g : T
e−→ T ` (⊥, g) ¹ (e, ·)

which expands to (e, ·) ¹ (e, ·) and also holds.

Assume the subtyping rule would use the parameter f of the subtype instead of g when

comparing the result types. This would lead to the following subderivation:

f : T → T ` (T −→
f

T) <: [f /g](T
e−→ T)

The resulting effect test f : T → T ` (>, ·) ¹ (e, ·) does not hold, therefore the two strategies for

subtyping are not equivalent.

Note that the second version of the subtyping rule is only imprecise, but not unsound: it

rejects some valid subtypes, but it does not accept any subtype tests that do not hold. The

reason is that a relative effect can be expanded to conform to a concrete effect as explained in

the previous Section 3.2.1, but not the opposite. For a concrete effect in the subtype, there

must be a matching concrete effect in the supertype. Since the modified typing rule uses

46

3.2. Formalization

the parameter symbol with a potentially larger effect, it is more restrictive than the original

version.

If we invert the original example, we see that the modified typing rule does not incorrectly

accept subtype tests:

· ` (g : T
e−→ T)

⊥−→ (T
e−→ T) <: (f : T → T)

⊥−→ (T −→
f

T)

The rule S-SUB correctly rejects this subtype test when comparing the result types:

f : T → T ` [f /g](T
e−→ T) <: (T −→

f
T)

f : T → T ` (e, ·) ¹ (⊥, f) does not hold, e 6v ⊥
The modified rule in which g is used to compare the two result types also rejects it:

g : T
e−→ T ` (T

e−→ T) <: [g / f](T −→
f

T)

g : T
e−→ T ` (T

e−→ T) <: (T −→
g

T)

g : T
e−→ T ` (e, ·) ¹ (⊥, g) does not hold, e 6v ⊥

Dependent Method Types in Scala

The Scala programming language uses invariant instead of contravariant subtyping for pa-

rameter types [Odersky, 2013]. The subtyping relation for two method types can only hold

if the parameter types of the two methods are identical. This implies that a method cannot

be overridden in a subclass with a method that accepts more general parameter types. The

following example illustrates this behavior:

class Base {
def m(s: String) = "Base"

}

class Sub extends Base {
override def m(o: Object) = "Sub"

}

The compilation of the second class fails with the error message “method m overrides nothing”.

If we remove the override modifier the example does compile, but then the subclass defines

an overloaded alternative for method m instead of overriding the one in the superclass.

Because subtyping for parameter types in Scala is invariant, the question of choosing the

correct parameter symbol discussed in Section 3.2.1 is irrelevant. The subtyping relation can

only hold if the two symbols have the same type, therefore any of the two symbols can be used

for comparing the result types.

47

Chapter 3. Dependent Types for Relative Effects Declarations

3.2.2 Typing Rules

The typing rules for REL are presented in Figure 3.3. Terms are type checked using a typing

statement of the form Γ; f ` t : T ! e where Γ maps variables to their types and f keeps

track of the function parameters in which the current expression is effect-polymorphic. The

environment f has a similar purpose as the parameter environment in the typing rules of LPE

in Section 2.5.2, but consists of list of parameters instead of just one.

The typing rule for variables is standard. In the typing rule for function abstractions, the

annotated relative effect x is used as the polymorphism environment for typing the function

body. We illustrate the typing rule using a simple higher-order function:

let h = (f : Int → Int) −→
f

f 1

The body of h is type checked as f : Int→ Int; f ` f 1, where the polymorphism environment

f records that the enclosing function is effect-polymorphic in f . Additionally, the typing

rule T-ABS ensures that the function type is well formed by using the predicate Γ ` T which

ensures that all relative effects refer to parameters that are in scope.

The rule T-APP-PARAM type checks function invocations where the function is a parameter

listed in the polymorphism environment. In this case the latent effect of the function is

excluded from the effect of the expression because it is already included in the relative effect

annotation of the enclosing function. Therefore, the function body of the above example has

no effects:

f : Int→ Int; f ` f 1 : T ! eff (APP,⊥,⊥,⊥)

The last typing rule T-APP is used for all remaining function invocations. It computes the

latent effect of the invoked function using the auxiliary function latent
Γ; f (T). The latent effect

of a function type (x : T1)
e−→
x

T2 is the maximal effect that might occur when a function of that

type is invoked. It consists of the concrete effect e and the latent effects of the functions f ∈ x

which are part of the relative effect of the function type.

However not all relative effects are included in the effect of the function application: the

relative effects of the invoked function which also belong to the polymorphism environment

of the current expression can be ignored. This is achieved by filtering out the relative effects

of the environment and considering only functions f ∈ (x \ f) when computing the joined

relative effect ep . The following example explains this aspect of the typing rule:

let h = (f : Int → Int) −→
f

let g = (x: Int) −→
f

f x

g 1

48

3.2. Formalization

Γ; f ` t : T ! e
T-VAR

Γ(x) = T

Γ; f ` x : T ! ⊥

T-ABS

(Γ, x : T1); x ` t : T2 ! e Γ ` (x : T1)
e−→
x

T2

Γ; f ` (x : T1) −→
x

t : (x : T1)
e−→
x

T2 ! ⊥

T-APP-PARAM

f ∈ f Γ; f ` f : (x : T1)
e−→
x

T ! ⊥ Γ; f ` t2 : T2 ! e2 Γ ` T2 <: T1

Γ; f ` f t2 : [T2/x]
Γ; f T ! eff (APP,⊥,e2,⊥)

T-APP

Γ; f ` t1 : (x : T1)
e−→
x

T ! e1 Γ; f ` t2 : T2 ! e2

Γ ` T2 <: T1 ep =⊔
f ∈(x\ f) latent

Γ; f ((Γ, x : T2)(f))

Γ; f ` t1 t2 : [T2/x]
Γ; f T ! eff (APP,e1,e2,e tep)

Γ ` T Γ ` T1 Γ, x : T1 ` T2 ∀ f ∈ x . f ∈ (Γ, x : T1)

Γ ` (x : T1)
e−→
x

T2

latent
Γ; f (T) ep =⊔

f ∈(x\ f) latent
Γ; f ((Γ, x : T1)(f))

latent
Γ; f ((x : T1)

e−→
x

T2) = e tep

[Tx /x]
Γ; f T x = y

[Tx /x]
Γ; f

(
(y : T1)

ey−→
y

T2

)
= (y : [Tx /x]

Γ; f T1)
ey−→
y

T2

x ∉ y ∧x 6= y

[Tx /x]
Γ; f

(
(y : T1)

ey−→
y

T2

)
= (y : [Tx /x]

Γ; f T1)
ey−→
y

[Tx /x]
Γ; f T2

x ∈ y ∧x 6= y Tx = (z : Ta)
ez−→
z

Tb ep =
{

latent
Γ; f (Ta) if z ∈ z

⊥ otherwise

[Tx /x]
Γ; f

(
(y : T1)

ey−→
y

T2

)
= (y : [Tx /x]

Γ; f T1)
eyteztep−−−−−−−−−→

(y\{x}),(z\{z})
[Tx /x]

Γ; f T2

Figure 3.3: Typing Rules for REL

49

Chapter 3. Dependent Types for Relative Effects Declarations

Since function g has type Int−→
f
Int, the invocation g 1 has the effect of f . However, because

the enclosing function h is also effect-polymorphic in f , the relative effect f can be ignored in

the invocation of g .

Another crucial detail in T-APP is that the latent effect of the parameter function x is computed

using the argument type T2 instead of the parameter type T1. Therefore, the effect of a function

invocation depends on the effect of the argument expression, which is the gist of effect-

polymorphism. We illustrate this typing rule by applying the higher-order function h to the

(pure) identity function:

Γ; · ` h ((x : Int) → x) where Γ= h : (f : Int→ Int) −→
h
Int

The argument function has type Int
⊥−→ Int, therefore the typing rule T-APP computes the

latent effect of h as

latentΓ;·((Γ, f : Int
⊥−→ Int)(f)) = latentΓ;·(Int

⊥−→ Int) =⊥

The effect-polymorphic definition of h and its invocation can be expressed in the type system

of LPE presented in Chapter 2. The additional expressiveness of REL stems from the fact that

functions cannot only be effect-polymorphic in their own argument, but also in the arguments

of enclosing functions. For instance, the following higher-order function m which extends the

behavior of an existing function has type (f : Int→ Int)
⊥−→ (Int−→

f
Int):

let m = (f: Int → Int) → (x: Int) −→
f

f x

For each invocation of m, the effect of the resulting function depends on the effect of the

argument function passed to m. This behavior is implemented in both typing rules for function

applications: T-APP-PARAM and T-APP. In the result type of the invoked function T , references

to the function’s parameter are eliminated using the substitution function [T2/x]
Γ; f T .

Recall that dependent types only occur in the form of relative effect annotations on function

types. The substitution [T2/x]
Γ; f T expands all relative effects x in type T to the latent effect of

the function type T2.

The typing rules implement effect-polymorphism by using the argument type T2 which might

be a subtype of the function’s parameter type T1. An invocation of the higher-order function

m with a pure identity function as argument is type checked as follows:

Γ; · ` m ((x : Int) → x) where Γ= m : (f : Int→ Int)
⊥−→ (Int−→

f
Int)

50

3.3. Relative Effect Declarations in Scala

The final type of the invocation is computed using the substitution

[Int
⊥−→ Int/ f]Γ;·(Int−→

f
Int) = . . . = Int

⊥−→ Int

which yields a function type with no side effects.

3.3 Relative Effect Declarations in Scala

This section explains how the type system with relative effects is integrated into the Scala

programming language. The main difference between Scala and the REL language from the

previous section is that Scala is an object-oriented language. Every parameter of a function

carries a potentially large number of methods, while in REL only single functions can be

passed as argument to other functions.

The effect of an effect-polymorphic function is specified in terms of its argument functions.

The fact that objects collect multiple functions into a record does not change the need for

effect-polymorphism. For instance, the effect of a logging function which calls toString on its

argument object o depends on the effect of that toString method:

def log(msg: String, o: Any): Unit = {
println(msg + o.toString) // IO effect, and the effect of o.toString

}

However the annotation scheme for relative effects needs to be adjusted to support the

object-oriented language: instead of just referring to the parameters of the function, a relative

effect annotation needs to specify in which of the parameter methods the function is effect-

polymorphic. A relative effect expression in Scala is therefore a method selection where the

receiver is a parameter of the polymorphic method, for example o.toString in the above

example.

3.3.1 Syntax for Relative Effect Annotations

The syntax for annotating effects in Scala is explained in detail in Chapter 5. For the purpose

of discussing relative effect annotations we need to know that effect annotations are standard

Scala annotations on the result types of method declarations. The effect annotation @pure

ranges across all effect domains and corresponds to the multi-domain purity annotation ⊥
introduced in Section 2.4. In Scala, the @pure annotation is also used for annotating effect-

polymorphism: the annotation accepts an arbitrary number of argument expression where

each expression denotes a relative effect of the function. Since effect-polymorphic functions

are pure by default as explained in Section 3.2, using the @pure annotation for denoting effect-

polymorphism is a natural choice. The previous example is annotated as follows:

51

Chapter 3. Dependent Types for Relative Effects Declarations

def log(msg: String, o: Any): Unit @pure(o.toString) @io

Each argument expression of the @pure annotation is required to be of the form p.m(%) . . . (%)

where p is either a parameter of the annotated method, a parameter of an enclosing method or

the self parameter this. The method m is a member of object p, and the term % is a pre-defined

function of type Nothing.

Because the relative effect annotations are standard Scala annotations, their arguments are

type checked like any other expression written in Scala. If the method p.m takes parameters,

then the annotation @pure(p.m) leads to a type error with the message “missing arguments

for method m”. The annotation only passes the Scala type checker if the method selection is

extended with arguments. Since the function % has type Nothing it conforms to any other type

an can therefore be used as argument expression. The effect system only takes the parameter p

and the selected method m into account; the concrete argument expressions are not relevant.

The following example illustrates the relative effect annotation:

def invoke(f: Int => Int): Int @pure(f.apply(%)) = {
f(10)

}

If the method p.m has multiple overloaded alternatives, overloading resolution can be guided

to choose the desired method by adding type ascriptions to the argument expressions %:

class A {
def f(t: T): A
def f(s: U): A

def op(): A @pure(this.f(% : T)) = { ... }
}

Note that using an underscore instead of the pre-defined % function is currently not supported.

The reason is that the Scala type checker transforms an expression of the form p.m(_) into

an anonymous function (x:Tx) => p.m(x). The current implementation of the effect system

does not recognize anonymous function expressions as relative effect annotations. This is a

technicality that can be changed.

Relative Effects for apply Methods

Higher-order methods which are effect-polymorphic in their argument function are common

in Scala. The classical example is the method mapwhich transforms the elements of a collection

using the function passed as argument. A function in Scala is represented as an object of type

FunctionN[T1,. . .,TN,R] where N is the number of parameters1. The function is invoked by

1The syntactic type (T1,. . .,TN) =>R is equivalent

52

3.3. Relative Effect Declarations in Scala

calling the member method apply which takes N parameters of types T1, . . . ,TN and returns

an object of type R.

Scala applies an implicit conversion to method invocation expressions if the selected function

does not denote a method. In this case a selection of the member method apply is automati-

cally inserted by the compiler. For example, the expression f(1) is transformed to f.apply(1)

if the value f is of type Int => Int.

The relative effect annotation of a higher-order method takes the form f.apply(%), as shown

in the method invoke. To simplify the relative effect annotation for this common case, the

apply method is used by default if the relative effect does not explicitly select a method of the

parameter. The method invoke can therefore be annotated as

def invoke(f: Int => Int): Int @pure(f) = f(10)

This special case is not specific to function types: for parameters of any type, the relative effect

p is equivalent to p.apply(%) with the necessary number of % arguments. If the object p defines

multiple overloaded apply methods, the annotated method is effect-polymorphic in all of

the apply members of object p. This can also be annotated explicitly by providing multiple

relative effect expressions, e.g., “@pure(p.apply(% : T), p.apply(% : U))” for two overloaded

methods with parameter types T and U .

Effect-Polymorphism is not Inferred

As described in Section 5.1.1, the effect of a method is inferred if its return type is inferred. In

the examples in this chapter, we assume that only the effect domain for IO is enabled.

def f = 1 // inferred type of f: Int @noIo
def g = print("hi") // inferred type of g: Unit @io

Methods with an inferred effect are always effect-monomorphic, they do not have any relative

effect annotations. The type system does not attempt to identify method calls which have a

parameter of the current method as receiver:

def invoke(h: Int => Int) = h(1) // inferred return type of invoke: Int @io

The method invoke is inferred to be impure because the apply method in the type Int => Int

can have arbitrary effects, i.e., the invocation of h is impure. In order to make the method

effect-polymorphic, the programmer needs to provide an explicit return type and a relative

effect annotation. The only exception to this rule is made for nested methods as we explain in

Section 3.3.3.

There are two reasons why relative effect annotations are not inferred. First, inferring a relative

effect for every method invocation with a parameter as receiver would lead to a large effect

53

Chapter 3. Dependent Types for Relative Effects Declarations

and also be misleading: a relative effect should document effect-polymorphism and not other

effects. Second, using a relative effect annotation to express a non-polymorphic effect can lead

to imprecise effect inference. The reason is explained in Section 3.4: relative effect annotations

do not encode information about the argument which is passed to the parameter method

invocation.

3.3.2 Refined Types for Effect-Polymorphism

The gist of relative effect annotations is that the effect of a method might be more precise at

call site than at declaration site. In the following definition, the parameter method a.op can

have arbitrary effects:

abstract class A {
def op(): Unit

}

def m(a: A): Unit @pure(a.op) = {
a.op()

}

For each invocation of m, the effect is computed using the method op of the actual argument

passed to m. For instance, the invocation of m in the example below has effect @noIo:

class B extends A {
def op(): Unit @noIo = ()

}

def t(b: B): Unit @noIo = {
m(b) // effect @noIo

}

Exploiting effect-polymorphism requires the argument type to override (or implement) a

method from the original parameter type with a smaller, more specific effect. The method op

has the unknown effect in class A, but only effect @noIo in the subclass B . It is not necessary to

have a named subclass in order to make use of effect-polymorphism:

def t(): Unit @noIo = {
val p = new A { def op(): Unit @noIo = () }
m(p) // effect @noIo

}

In this example the Scala compiler assigns the refinement type “A { def op(): Unit @io }”

to the value p because the return type of op has a more precise effect than in the parent type

A. Section 5.4.3 explains how the Scala type checker is extended to take effects into account.

When computing the effect of the invocation m(p), the effect of method op is looked up in the

54

3.3. Relative Effect Declarations in Scala

refinement type of p, which yields @noIo.

The return type and the effect annotation of method op in the above example can be inferred,

as we show in Section 5.1.1. The example can be shortened as follows:

def t(): Unit @noIo = {
m(new A { def op() = () })

}

Note that the example is a typical instance of the “strategy” pattern described by Gamma et al.

[1995]. In languages that support higher-order functions, this pattern is usually replaced by a

function parameter in the method definition and a function literal at the call site:

def m(op: () => Unit): Unit @pure(op) = {
op.apply()

}

def t(): Unit @noIo = {
m(() => ())

}

Effect checking in this last example uses the exact same mechanisms that were introduced

with the other examples in this section. The Scala type checker assigns a refinement type

to the function literal which specifies the precise effect of the function. The full type of the

function literal can be annotated if desired:

val f: Function0[Unit] { def apply(): Unit @noIo } = () => ()

The refinement specializes the effect of the apply method, which is allowed to have arbitrary

effects in the trait Function0. When computing the effect of the invocation m(f), the relative

effect @pure(op), which is equivalent to @pure(op.apply()), is expanded to @noIo.

Function types with refinements are relatively verbose and hard to read. In practice we

encountered only few situations where function types with explicit effects have to be written

by programmers. For function literals the refined types are inferred and methods with function

parameters typically accept functions with arbitrary effects, i.e., do not require a refinement.

However, if the verbose syntax turns out to be problematic we plan to introduce syntactic

sugar for function types with specific effects.

3.3.3 Relative Effects for Nested Definitions

A nested method definition can declare relative effects which refer to parameters of its en-

closing method. This feature is required to correctly express the effect of methods which are

nested within an effect-polymorphic method:

55

Chapter 3. Dependent Types for Relative Effects Declarations

def invoke(f: Int => Int): Int @pure(f) = {
def impl(): Int @pure(f) = f(10)
impl()

}

The invocation of impl type checks without any concrete effect because its relative effect f is

also a relative effect of the enclosing method invoke. If the relative effect annotation is omitted

in the nested method, the example does not type check:

def invoke(f: Int => Int): Int @pure(f) = {

def impl(): Int @pure = f(10) // fails

impl()
}

This definition leads to an effect mismatch error because the invocation of f might have

arbitrary effects, which the signature of impl does not allow. The body of method impl is type

checked in a context without any relative effects.

Marking the nested method impure does not work either:

def invoke(f: Int => Int): Int @pure(f) = {

def impl(): Int = f(10) // ok
impl() // fails

}

In this case the invocation of the nested method impl fails because by its signature it might

have arbitrary effects, while the effect annotation of invoke only allows the effect of function

f .

If the return type of the nested method is omitted entirely, the return type and the latent effect

will be inferred. However we defined in Section 3.3.1 that methods with an inferred effect are

never effect-polymorphic. This means the example would not compile if the return type of

the nested method is omitted: the method impl is inferred to have the topmost effect and the

invocation of impl would fail just as in the last example.

To address this problem the type system makes an exception for nested methods. If the effect

of a nested method is inferred, then it inherits the relative effect annotations from the next

enclosing method. The example therefore type checks without a type and effect annotation

on the nested method impl:

def invoke(f: Int => Int): Int @pure(f) = {
def impl() = f(10) // return type of impl: Int @pure(f)
impl() // ok

}

56

3.3. Relative Effect Declarations in Scala

Relative Effects in Nested Classes and Function Literals

Nested methods are not necessarily defined as direct children of an outer method, but they

can also be members of classes or objects defined within a method:

1 abstract class A {
2 def op(): Unit
3 }
4

5 def m1(a1: A): Unit @pure(a1.op) = {
6 a1.op()
7 }
8

9 def m2(a2: A): Unit @pure(a2.op) = {
10 class NestedA extends A {
11 def op(): Unit @pure(a2.op) = {
12 a2.op()
13 }
14 }
15 m1(new NestedA)
16 }

To compute the effect of the invocation of method m1 in line 15, its relative effect @pure(a1.op)

is expanded using method opdefined in the argument type, i.e., NestedA. This method has itself

a relative effect @pure(a2.op) which happens to be in the current polymorphism environment:

the outer method has the same relative effect. Therefore the invocation of m1 is treated as pure.

The example involving a nested class might seem far fetched, but this situation occurs fre-

quently when using higher-order functions. After translating the above example to use higher-

order functions it looks less obscure:

1 def m1(op1: () => Unit): Unit @pure(op1) = {
2 op1()
3 }
4

5 def m2(op2: () => Unit): Unit @pure(op2) = {
6 val f = () => op2()
7 m1(f)
8 }

Similar as in the last example of Section 3.3.2, the function literal f in line 6 is assigned a

refinement type which specializes the effect of the function’s apply method:

val f: (() => Unit) { def apply(): Unit @pure(op2) } = () => op2()

The function inherits the relative effect annotations from the outer method m2, as explained in

Section 3.3.3. This programming pattern is ubiquitous in the design of the Scala collections

57

Chapter 3. Dependent Types for Relative Effects Declarations

1 trait TraversableLike[+A, +Repr] {
2 def foreach(f: A => Unit): Unit @pure(f)
3

4 def newBuilder: Builder[A, Repr] @pure
5

6 def filter(p: A => Boolean): Repr @pure(p) = {
7 val b = newBuilder
8 for (x <- this)
9 if (p(x)) b += x

10 b.result
11 }
12 }

Figure 3.4: Trait TraversableLike

library which we describe in the following section.

Relative Effects in the Scala Collections Library

The Scala collections library in its current form was introduced in Scala 2.8 [Odersky and Moors,

2009]. Each collection class inherits from trait TraversableLike which has an abstract method

named foreach. Using foreach, the trait defines implementations for all of the common

collection operations such as isEmpty, filter or map. Figure 3.4 presents the relevant parts of

trait TraversableLike.

Having shared implementations across multiple collection types is great for maintainability,

but it is challenging with respect to typing: when invoking filter on a Set[Int], the pro-

grammer expects to obtain a result of type Set[Int], similarly for other collection types. To

abstract over the representation type, the trait TraversableLike has a type parameter Repr

which represents the collection type in addition to the type parameter A which denotes the

collection’s element type.

The collection class Set[A] extends TraversableLike[A, Set[A]] and its method filter has

return type Set[A]. The implementation of filter creates a new builder object, appends all

elements that satisfy the predicate p to the builder, and retrieves the resulting collection. The

method newBuilder returns a builder object which creates a collection of type Repr. This way,

the generic method filter returns a set in class Set[A], a list in class List[A] and so on for

other collection types.

The method foreach is annotated to be pure up to the effect of its argument, i.e., @pure(f).

Override checking therefore enforces all implementations of foreach to be pure as well, as

explained in Section 5.4.3. To discuss effect checking of method filter we consider an effect

system that tracks IO effects. An effect system that can express the state modifications on the

58

3.4. Expressiveness of Relative Effects

builder object is introduced in Chapter 4.

The for comprehension in lines 8 and 9 is transformed by the Scala compiler to an equivalent

invocation of foreach:

this.foreach(x => if (p(x)) b += x)

Since the append method += of the builder is pure (it has no IO effect), the function literal has

only the effect of the predicate invocation p(x). The function is defined within method filter

which is effect-polymorphic in p, therefore it inherits the relative effect annotation @pure(p)

and obtains the refined type (A => Unit) { def apply(x: A): Unit @pure(p) }.

Method foreach has the effect of the apply method of its argument function, which is the

relative effect @pure(p) for the invocation within filter. This relative effect can be ignored

since filter itself has the same relative effect, and the entire for comprehension is pure. Be-

cause the invocations newBuilder and b.result also have no side effects, the implementation

of filter can be annotated pure.

3.4 Expressiveness of Relative Effects

The examples in the previous section show that the type system presented in this chapter can

express effect-polymorphism of common code patterns such as those in the Scala collections

library. Annotating existing code is straightforward and does not require any refactorings such

as the introduction of effect parameters. The syntactic overhead thus remains minimal.

There are however examples of effect-polymorphic code which cannot be correctly annotated

with relative effect annotations. This section discusses the expressiveness of the type system

and gives an intuition on the practical impact of its limitations.

The experience gained from applying relative effects to existing Scala code suggests that the

limitations presented in this section are not critical in practice. However the effect system has

not yet been made available to a broader audience of Scala programmers, which will provide

important data for a comprehensive assessment of the practicality of the type system.

Abstracting Over Functions With Relative Effects

If the parameter function of an effect-polymorphic method is itself effect-polymorphic, then a

relative effect annotation usually leads to an over-approximation of the effect:

class A {
def run(f: A => Unit): Unit @pure(f) = f(this)

}

59

Chapter 3. Dependent Types for Relative Effects Declarations

def doRun(a: A, g: A => Unit): Unit @pure(a.run(%)) = {
a.run(g)

}

The effect of doRun is annotated as the effect of the method run of its parameter a. However,

the relative effect annotation does not encode which function is passed as argument to run.

This leads to an over-approximation in the following invocation:

doRun(new A, a => ())

To compute the effect of the invocation, the relative effect a.run(%) of doRun is expanded to

the relative effect f of method run. At this point the type system does not know which function

the parameter f binds to, so it assumes the unknown effect.

This limitation is only relevant when a relative effect abstracts over a method that is effect-

polymorphic and also gets overridden with a more specific effect in subclasses. In the example,

the relative effect annotation @pure(a.run(%)) only makes sense when the run method of class

A is expected to be overridden with a more specific effect. In our practical experience we did

not encounter such code: effect-polymorphic methods are typically overridden with the same

effect, e.g., the method foreach in the collections library.

If a method is not expected to be overridden with a more specific effect, then there is no

advantage to abstract over its the effect. In the example, purity can be verified correctly if

method doRun is not effect-polymorphic in a.run:

def doRun1(a: A, g: A => Unit): Unit @pure(g) = {
a.run(g)

}
doRun1(new A, a => ())

The type system infers the invocation of doRun1 to be pure.

The reason for the over-approximation in effect inference of the initial example is that the

relative effect annotation @pure(a.run(%)) does not encode the fact that the function passed

as argument to run is pure. If this additional precision turns out to be essential in practice, the

expressiveness of the type system could be enhanced by including the argument type in the

relative effect annotation:

type PureFun = (A => Unit) { def apply(x: A): Unit @pure }
def doRun(a: A, g: A => Unit): Unit @pure(a.run(%: PureFun)) = ...

60

3.4. Expressiveness of Relative Effects

Polymorphism With Functions in Data Structures

Relative effect annotations are syntactically restricted to methods of parameters, for instance

they cannot refer to methods of objects that that are obtained through a parameter. This leads

to situations where effect-polymorphism of a method cannot be expressed, for instance when

the parameter function is curried (assume that the single arrow -> denotes pure functions, i.e.,

a function type T -> S is equivalent to (T => S) { def apply(x: T): S @pure }):

def appZeros(f: Int -> Int => Int): Int @pure(f) = {
f(0)(0)

}

Since function types in Scala associate to the right, function f has type “Int -> (Int => Int)”.

The relative effect annotation f, which is equivalent to f.apply(%), relates to the pure outer

function which returns another function, and not to the inner function returning an integer.

For that reason the definition of appZeros leads to an effect mismatch error: the relative effect

annotation allows the effect of f.apply, which is pure anyway, but the unknown effect of

f(0).apply is not annotated in the signature.

For curried functions the effects typically only happen at the innermost level, for example:

val div = (x: Int) => (y: Int) => {
if (y == 0) error("div by 0") else x / y

}

Effect-polymorphism of curried functions cannot be expressed with relative effect annotations.

This is a minor issue in Scala because programmers usually write functions with multiple

parameters instead of curried functions. When using a function with two arguments, the

relative effect annotation works as expected:

def appZeros(f: (Int, Int) => Int): Int @pure(f) = {
f(0, 0)

}

Besides curried functions, there are other examples of effect-polymorphic code that cannot

be expressed with relative effect annotations for the same underlying reason. The problem is

that methods can only be polymorphic in members of their parameters, but not in members

of objects obtained through their parameters. This case occurs for instance when functions

are stored in a data structure that is passed as argument:

def mApply(x: Int, mf: Option[Int => Int]): Int =
if (mf.isEmpty) x
else mf.get(x)

61

Chapter 3. Dependent Types for Relative Effects Declarations

The effect of mApply is the effect of the function stored in the optional value passed as argument,

but this cannot be expressed using relative effect annotations. In a type system with parametric

polymorphism for effects, the effect of method mApply would be expressed by an effect type

parameter that is used as the effect of the optional parameter function.

Another example whose effect cannot be expressed with relative effect annotations for similar

reasons is the observer pattern: the effect of the subject notifying the observer depends on the

effect of the observer.

class Subject {
var obs: Observer = _

def register(o: Observer) { obs = o }
def notifyObserver() { obs.update(this) }

}
trait Observer {
def update(s: Subject)

}

In method notifyObserver, the invoked method this.o.update is not a direct member of the

this parameter, so a relative effect annotation cannot refer to update. In an effect system with

explicit parameters the Subject class could be parametrized by the effect of its observer.

Instead of introducing explicit effect type parameters, relative effect annotations could be

generalized to arbitrary paths. This would allow expressing the effect-polymorphism of the

examples in this section. For example, the relative effect of method notifyObserver would be

@pure(this.o.update). The difficulty with this idea is that it is not clear how the identity of ob-

jects can be tracked systematically. For example, the class Option in the Scala standard library

is abstract and does not have any field members. Given an object o of type Option, the system

should be able to show that the expressions “o.get” and “o match { case Some(v) => v }”

denote the same value. Such a system would be considerably more complex than the relative

effect annotations introduced in this chapter.

Effect Masking

In the type system presented in this chapter, effect masking can only be expressed at the level

of type-and-effect inference rules, but not in the effect annotations of a method.

With by-name parameters and multiple argument lists, Scala provides support for user-defined

control structures that are as elegant as built-in language features for the programmer. For

instance, users can define a custom operator for exception handling:

def myTry[T](f: => T)(c: PartialFunction[Throwable, T]) =
try { f }
catch { case e: Throwable if c.isDefinedAt(e) => c(e) }

62

3.5. Related Work

myTry { 1 / 0 }
{ case _: java.lang.ArithmeticException => 0 }

The effect of an invocation of myTry is the effect of the parameter function f, but without the

exceptions handled by the partial function c.

The annotation system for polymorphic effects could be extended to support effect masking,

for instance by adding a mask parameter to relative effect annotations. The effect annotation

@pure(f, mask = throws[E]) would describe a method that catches the exception E of its

parameter function f.

For the effect primitive myTry, that annotation system alone is not sufficient: the effect mask

cannot be defined statically but it depends on the exceptions that are handled by the partial

function c. Expressing effect masking in this case requires a further extension to the type

system which tracks the definition domain of partial functions.

There are effect domains which would profit from the ability to express effect masking even

without advanced extensions to the type system, for instance the effect system for blocking

operations presented in Section 2.6.2. Another example is the breakable operator defined in

the Scala library that is discussed in Section 5.2.2. Effect annotations that support static effect

masks are supported in other projects like the work on Anchored Exceptions [van Dooren and

Steegmans, 2005] or the Koka language [Leijen, 2012].

3.5 Related Work

Effect-polymorphism using effect type parametrization was first introduced by Lucassen and

Gifford [1988] and is described in Section 2.2. The relative effect annotations introduced in

this chapter eliminate most of the syntactic overhead involved with explicit effect parameters

while keeping the ability to express the behavior of common programming patterns.

The idea of expressing the exceptions of a method in terms of the exceptions of some other

method has been explored in the work on anchored exception declarations by van Dooren and

Steegmans [2005]. To solve the verbosity and limited expressiveness of Java’s checked excep-

tions, they introduce a second kind of exception declaration, called an anchored exception

declaration. Anchored exception declarations have the form “like <InvocationExpression>”

and co-exist with ordinary, concrete throws clauses. The expression in an anchored excep-

tion declaration is an arbitrary function invocation in which type names can also be used as

terms, for instance to resolve an overloaded method. For example, “like p.a().b()” allows

the exceptions of method b() when accessed through p.a()and the annotation “like A.m()”

allows the exceptions of method m() from any value of type A. Their system supports effect-

polymorphism by substituting argument expressions for parameter names at call sites, which

potentially refines the method selection of an anchored exception declaration to a more

63

Chapter 3. Dependent Types for Relative Effects Declarations

specific method with fewer exceptions. Anchored exception declarations that do not use

parameters, e.g., “like A.m()”, are mere aliases of exception lists. Finally, anchored excep-

tion declarations can express effect masking. The relative effect annotations introduced in

this chapter are simpler than anchored exception declarations and allow specifying effect-

polymorphism across multiple effect domains.

Kneuss et al. [2013] present a whole-program effect inference algorithm for memory effects

which works well for programs with callbacks such as programs using higher-order functions.

Effects are represented as control flow graphs that may contain invocations of methods on

parameters, which is equivalent to relative effect annotations. They employ heuristics to

decide whether the effect of a method invocation should be considered directly or represented

as a relative effect, which they call a delayed invocation. Their system is also discussed in

Section 4.5.3 as related work of our purity type system that we describe in the next chapter.

3.6 Conclusion

In this chapter we introduced relative effect annotations, a lightweight and intuitive syntax

based on dependent types for denoting effect-polymorphic functions. Relative effects precisely

express effect-polymorphism of functions that take multiple functions as arguments. Such

higher-order functions are common in object-oriented programming languages where each

object holds a potentially large number of member methods.

The type system with relative effects is explained using a lambda calculus with effects and

dependent types. We evaluate the type system with an implementation for the Scala language

and show that relative effect annotations can express common patterns involving higher-order

code such as those found in the Scala collections library.

In the future we plan to extend relative effect annotations with the ability to express effect

masking. This allows expressing the behavior of certain methods directly in their signature

instead of requiring a dedicated typing rule, e.g., the breakable operator defined in the Scala

library.

Section 3.4 shows examples of effect-polymorphism that can be expressed with explicit effect

type parameters, but not with relative effect annotations. In case these issues turn out to be rel-

evant in practice, we plan to work on a hybrid strategy for expressing effect-polymorphism that

unifies the benefits of relative effect annotations and traditional parametric polymorphism.

64

Chapter 4

A Type-and-Effect System for Purity

This chapter presents a type-and-effect system which tracks purity of functions with respect

to state modification effects. We implemented the system as an effect domain in the generic

framework for polymorphic effect checking introduced in Chapter 3. The effect system can

express purity of common programming patterns that make use of local state such as the use

of an iterator, nevertheless effect annotations are lightweight and intuitive.

4.1 Introduction

One of the differences between impure and purely functional programming languages is

support for mutable state. Efficient implementations of algorithms and data structures often

use mutable state internally even though they appear pure or immutable to their clients.

For example, the Vector class in the Scala standard library, an immutable random access

data structure, is implemented using a trie of arrays which are copied and modified on

transformation operations.

The desire to control the scope of memory effects is the driving force behind most existing

work on type-and-effect systems, including the original effect system by Gifford and Lucassen

[1986]. Memory effect systems have been used to schedule non-interfering expressions to

execute in parallel [Lucassen and Gifford, 1988], [Bocchino et al., 2009] or to provide a stack-

based implementation of a programming language with mutable state [Tofte and Talpin, 1994].

Knowledge about side effects and purity in particular can be used not only for optimizations

and improved scheduling, but also for making programs safer and easier to understand. The

fundamental difficulty in tracking memory effects stems from aliasing. Existing approaches

for control aliasing and memory effects are discussed in Section 4.5.

The effect system in this chapter is based on ideas introduced by Pearce [2011] in JPure, a

purity system for Java. It builds on the observation that if we modify state that is allocated

65

Chapter 4. A Type-and-Effect System for Purity

within a function, then clients of that function cannot observe these modifications. Similar

to JPure, effects are computed using a modular, intraprocedural analysis based on effect

annotations. We use the same concept of locality to denote private state which is part of an

object’s representation.

Compared to JPure, our effect system is flow-insensitive, which makes it suitable for higher-

order languages such as Scala or C#. Flow-insensitivity also enables the effect system to be

integrated with the generic effect system introduced in Chapters 2 and 3. We introduce a

generalized notion of freshness that allows annotating the precise locality of a function’s return

value. This enables our system to correctly express the behavior of getter methods, which are

ubiquitous in Scala. Finally, our system allows effect annotations of nested methods to refer

to parameters and variables from the enclosing scope, which is vital for expressing effects in

higher-order code.

4.2 Overview

This section gives an informal introduction to our purity effect system. We use the annotation

syntax from the Scala implementation presented in more detail in Section 4.4.

4.2.1 Purity and Modification Effects

The type-and-effect system for checking purity is based on the observation that a method

which does not modify state that existed before its invocation appears pure to its callers. In

other words, a pure method is allowed to modify state which is allocated within the method,

but no other program state. It can for example mutate temporary objects like iterators or

initialize fields of freshly created object structures.

This definition of purity is common. It is also used by Sălcianu and Rinard [2005] in their

purity system based on pointer analysis, in ownership-based systems such as the Universe

Types by Dietl et al. [2007] or in the Java Modeling Language (JML, Leavens et al. [2006]).

We first consider a simple effect system that only has two effect annotations: pure and impure.

A method is pure if it does not modify any existing state and impure otherwise. In this system,

the method next of an iterator has to be marked impure because it modifies the state of the

iterator. We consider a method that searches a specific element in a list using an iterator:

def contains(l: List[Int], e: Int): Boolean = {
val it = l.iterator
while (it.hasNext)
if (it.next() == e) return true

return false
}

66

4.2. Overview

The method contains does not have any observable side effect: the invocation l.iterator()

returns a new iterator, hasNext() does not modify any state, and next() only modifies the state

of the freshly allocated object it. However, the type signature of the impure method next

does not specify that only the iterator is modified, thus the simple effect system requires the

method contains to be annotated impure.

To overcome this limitations our purity type system supports more expressive effect anno-

tations that specify which parameters a method is allowed to modify. The trait Iterator is

annotated as follows:

trait Iterator[+T] {
def hasNext: Boolean @mod()
def next(): T @mod(this)

}

Method hasNext is annotated @mod(), which denotes purity; it does not allow any existing state

to be modified. The effect annotation @mod(this) on next allows modifications to the state of

object this.

Using this effect annotation, the effect system has enough information to know that the

invocation of next in the body of contains only modifies the iterator object and not any other

program state. However, in order to conclude that the implementation of contains is pure, the

system also needs to know that the iterator object it is freshly allocated and non-aliased. We

discuss in Section 4.2.3 how freshness is annotated and tracked, but first we explain the effect

annotation @mod(this) more precisely.

4.2.2 Ownership and Locality

The effect annotation @mod(this) of method next in the iterator class allows modifications to

the state of the iterator. For instance, a list iterator can be implemented using a single field:

class ListIterator[+T](list: List[T]) extends Iterator[T] {
private[this] var l = list
def hasNext = l.nonEmpty
def next(): T @mod(this) = {
val r = l.head
l = l.tail
r

}
}

For each instance of class ListIterator, the state modified by method next is private to that

instance and not shared with any other object. In a context where an iterator object is known

to be freshly allocated, such as the body of method contains from Section 4.2.1, the invocation

of next cannot modify any existing state.

67

Chapter 4. A Type-and-Effect System for Purity

An effect annotation @mod(o) can be interpreted not only as a permission to modify the state

of object o, but also as a conditional purity annotation. If the object o is known to be fresh,

then an expression with effect @mod(o) is pure.

The system outlined so far fails to express the purity of another common programming pattern

which uses only locally scoped effects: if an object holds internal state that is never shared with

other objects or instances, modifications of that state can be encapsulated as modifications

of the owner object. One example is the Builder type used in the Scala collections library

[Odersky and Moors, 2009] which supports appending elements and retrieving the resulting

collection.

trait Builder[-Elem, +To] {
def +=(e: Elem): Unit @mod(this)
def result: To @mod()

}

The class ArrayBuffer implements the builder interface using an internal array to store the

appended elements:

class ArrayBuffer[A:ClassTag] extends Builder[A, ArrayBuffer[A]] {
@local private[this] var array: Array[A] = new Array(initSize)
private[this] var size = 0

def +=(elem: A): Unit @mod(this) = {
ensureSize(size + 1)
array(size) = elem
size += 1

}
def result: ArrayBuffer[A] @mod() = this

}

Like in the iterator example, if a fresh array buffer is used within a method to add elements

and eventually obtain a collection, the effects on that builder and its array are not observable

from the outside.

In order to support objects with internal data structures the system is extended with a simple

notion of ownership. By marking a field of an object as @local, the programmer defines the

internal state of the object accessible through that field to be owned by the outer object. A

method annotated with effect @mod(o) is not only allowed to modify the fields of o, but also the

fields of objects owned by o.

The locality of an object is defined as the transitive closure of all objects reachable through

fields annotated @local. The type system ensures that an object type checks as being fresh

only if all objects in its locality are also fresh, therefore modifications of the locality of a fresh

object cannot change any existing program state.

68

4.2. Overview

4.2.3 Freshness and Result Localities

The effect annotation @mod(o) on a method ensures that if the value passed as argument for o

in a specific invocation is known to be fresh, then that invocation only modifies fresh state.

In the example given in Section 4.2.1, purity of the method contains depends on the fact that

the iterator it is known to be fresh, so modifying its fields does not modify any state that

existed before. But how does the type system know that an object is fresh? The answer involves

a third kind of annotation, the locality annotation @loc, which specifies the locality of the

object that a method returns.

If a method always returns a freshly allocated object whose locality cannot be accessed through

any previously existing state, then that method is called fresh and is annotated with the empty

locality @loc(). The most prominent examples of such methods are factory methods, but

there are other important fresh methods such as List.iterator() which always creates a new

iterator1.

There are also methods which only return a fresh object if some of its parameters are fresh.

The trivial example is the identity method:

def id[T](x: T): T @loc(x) = x

If a fresh object is passed to id then the resulting object is also fresh. Conditional freshness

annotations are required to correctly express freshness of getters for local fields, like the

method getCounter in line 8 of the following example:

1 class Counter {
2 private var x = 0
3 def inc(): Int @mod(this) = { x += 1; x }
4 def get: Int @mod() = x
5 }
6 class HasCounter {
7 @local var counter = new Counter
8 def getCounter: Counter @loc(this) = counter
9 }

As explained in the previous section, the effect system ensures that an object can only type

check as fresh if all objects in its locality are also fresh. Therefore the method getCounter

returns a fresh object if the receiver instance of type HasCounter is known to be fresh, as

illustrated by the following example:

def test: Int @mod() = {
val hc = new HasCounter // hc is fresh
val c = hc.getCounter // c is also fresh
c.inc() // modifies only fresh state

1In the case of an empty list, the same empty iterator can be reused. This case is discussed in Section 4.4.4.

69

Chapter 4. A Type-and-Effect System for Purity

}

At each call site, effects on parameters are translated by the effect system according to the

localities of the corresponding arguments. In the following example, the effect @mod(this) of

method inc in class Counter is translated to @mod(hc):

def incHc(hc: HasCounter): Int @mod(hc) = {
val c = hc.getCounter // c has locality @loc(hc)
c.inc() // modifies the locality of c

}

Getters are common in many programming languages, but even more so in Scala where every

field access is performed through an accessor method [Odersky, 2013]. The ability to specify

the locality of a method is therefore indispensable in order to apply the purity type system

to Scala. If the locality of an object is unknown, we use the annotation @loc(any). Examples

of objects with an unknown locality are global objects and objects obtained by reading a

non-local field. If an object of unknown locality is modified, then the expression has effect

@mod(any) which denotes impurity.

4.2.4 Effects of Field Updates

The effect of updating a field of an object depends on whether the field is annotated @local

or not. For non-local fields, the effect of an assignment is expressed as @mod(o) where o is the

object that contains the field. The increment method of class Counter in Section 4.2.3 is an

example of a non-local field update, it has effect @mod(this) since it changes the field this.x.

The difference with @local fields is that after the assignment, the stored object is part of the

locality of the field’s owner. Remember that an object can only be considered fresh if all objects

in its locality are known to be fresh. When storing an object in the locality of a fresh object,

freshness is only maintained if also the stored object is fresh.

In a flow-sensitive type system the localities of the objects involved in an assignment could

simply be updated to reflect the fact that they have been merged. Since our effect system is

not flow-sensitive we do not have this possibility, instead we keep track of assignments to

@local fields using modification effects.

The idea is based on the observation that the @mod annotation expresses conditional purity:

an expression with effect @mod(x, y) is pure if the localities x and y are known to be fresh. In

order to find the correct effect annotation for an assignment expression we can therefore ask

which objects need to be fresh for the assignment to be pure, i.e., to not modify any existing

state. We consider the following example:

val hc = new HasCounter
hc.counter = someCounter

70

4.2. Overview

hc.counter.inc()

Since the object hc is known to be fresh, the assignment to the @localfield hc.counterdoes not

modify any existing state. The effect of incrementing the counter in the last line depends on the

locality of the object someCounter, expressed as @mod(someCounter). But the flow-insensitive

type system is not capable of computing this effect: the object hc is fresh, and since hc.counter

is part of its locality, the last line is assumed to be pure.

We address this issue by including both the owner of the changed field and the newly stored

object in the effect of an assignment to a local field. Consequently, the assignment expres-

sion in the second line has effect @mod(hc, someCounter). Note that this effect is an over-

approximation: if the third line is omitted and the counter is not incremented, the example

does not have any observable side effect, but the effect system still infers @mod(someCounter).

Section 4.4.2 investigates this issue in more detail and explains the reasons for using a flow-

insensitive type system in the first place.

In Scala, assignments to local fields are performed through setter methods. Considering the

above discussion, the effect annotation of a setter includes not only the modified object hc but

also the stored object c:

def setC(hc: HasCounter, c: Counter): Unit @mod(hc, c) = {
hc.counter = c

}

The effect annotation can again be understood as a conditional purity annotation: an invoca-

tion of setC is pure if the localities of both parameters hc and c are fresh.

4.2.5 Freshness Depends on Purity

In this section we investigate the relation between freshness and modification effects intro-

duced in Section 4.2.4. The main conclusion is that the result of an expression can only be

considered fresh if the expression does not have any side effects.

We illustrate this observation with a factory method that accepts an initial value for a local

field of the constructed object. The method returns a fresh object, but the argument object is

stored in the result:

def mkHC(c: Counter): HasCounter @mod(c) @loc() = {
val hc = new HasCounter()
hc.counter = c
hc

}

As discussed in Section 4.2.4, the assignment effect includes both variables @mod(hc, c). The

71

Chapter 4. A Type-and-Effect System for Purity

locality of the method body is @loc(hc). Since the local variable hc is out of scope for the

signature of the method, references to it are replaced by its initial locality, i.e., the empty

locality @loc(). This leads to the effect and locality annotations in the method signature.

The freshness annotation @loc() might seem surprising: the returned object can only be typed

as fresh if the parameter c is also fresh, otherwise it has non-fresh state in its locality. However,

in combination with the effect @mod(c) the freshness annotation is safe. The reason is that the

effect system can only consider an object as fresh in a pure context, i.e., in the absence of side

effects. In order for an invocation of mkHC to be pure, the argument for parameter c is required

to be fresh, and in this case the resulting object consists of only fresh state.

Objects can only be considered fresh in pure contexts. The reason is that any expression which

does have a side effect @mod(o) can create aliases between the modified object o and previously

fresh state: fresh state can be captured in the locality of o, or the object o can be captured in

the locality of some fresh state.

Note that annotating the method mkHC with the result locality @loc(c) is equivalent and does

not introduce any imprecision. We can say that the @loc annotation of a method implicitly

contains all localities from the method’s @mod effect.

4.3 Formalization

This section formally presents the type-and-effect system for purity outlined in Section 4.2.

It uses the language PUR, a lambda-calculus with mutable records, presented in Figure 4.1.

The formal language is in A-normal form (ANF, Flanagan et al. [1993]), hence all intermediate

terms are named. In Section 4.3.3, we show an example that explains why the typing rules

require terms to be in ANF.

The language does not feature arbitrary mutable references (as described by Pierce [2002] in

Chapter 13); instead assignments are limited to the fields of records. These records represent a

simple model of objects with mutable fields in object-oriented languages like Scala, which

is sufficient to highlight the fundamental properties of the type system. The main simplifi-

cation in PUR with respect to Scala is that the formal language does not support mutable

local variables. Section 4.4.1 explains how assignments to local variables are handled in our

implementation of the purity type system for Scala.

To define the ownership constraints introduced in the previous section, each field in a record

literal can be optionally annotated as “local”. Similarly, record types register which fields of an

object are local.

Function types consist of a parameter name and type, a latent effect e describing the localities

the function might modify, a locality annotation loc that designates the locality of the returned

value and a return type.

72

4.3. Formalization

t ::= let x = p in t let-bound expression
| x.l := y assignment
| x variable

p ::= (x : T) → t abstraction
| x y application

| {[local] l = x} record construction
| x.l selection
| t term

T ::= (x : T)
e−→loc T function type

| {[local] l : T } record type
e ::= x | any effect annotation
loc ::= x | any locality annotation

Γ ::= x : T ◦ loc variable typing environment

Figure 4.1: Language with Purity Effects (PUR)

The effect and locality annotations are either a list of variables x or the unknown locality “any”.

The symbol “;” denotes the empty list: methods with an empty effect annotation are pure,

an empty locality annotation describes methods that return fresh objects. A method with

the “any” effect might modify any existing object and create arbitrary aliases in the heap. The

locality annotation “any” describes methods that return objects with an unknown locality.

Effects and result localities each form a lattice with “any” as the top element, the join operator

t is defined as follows:

anyte = e tany = any x t y = x, y

The following example illustrates the syntax of terms and types. It creates a counter and an

increment function, updates the counter and returns its value (integers are assumed to be

part of the language). The underscore “_” is used as a substitute to avoid introducing unused

variable names.

let c = {x = 1} in

let inc = (_ : {}) →
let v = c.x in

c.x := v +1 in

let _ = inc {} in

let r = c.x in

r

Since there is no Unit type in the PUR language, assignment expressions evaluate to the

73

Chapter 4. A Type-and-Effect System for Purity

assignee. Consequently, function inc has type “(_ : {})
c−→c {x : Int}” with latent effect c and

return locality c. The invocation of inc has effect c, which is masked once c gets out of scope,

so the overall example is typed as a pure expression.

Before introducing the typing rules in Section 4.3.2 and analyzing the example in more detail,

we introduce the subtyping relation for PUR.

4.3.1 Subtyping

The subtyping relation presented in Figure 4.2 is reflexive and transitive.

The subtyping rule for function types S-FUN compares the two parameter types in contravari-

ant fashion. For comparing the effects and result types we face the same problem as in the

REL language in Chapter 3: the parameter names of the two function types need to be unified

in some way.

Section 3.2.1 shows that in the case of REL, it is important to use the parameter symbol of

the supertype when comparing the effects and the result types. For consistency we use the

same technique for the PUR language, although in this case it does not matter which of the

two parameters is used. The reason is that parameters are only compared symbolically, but

never expanded according to their types as in the case of REL.

The subtyping rule S-FUN requires the effect, the result locality and the result type of the

subtype to be more precise than in the supertype. This allows to use a function that always

returns a fresh object to be used in places where a function with an arbitrary result locality

is expected. The rule prevents a non-fresh function to be passed when a fresh function is

required, as in the following example:

let init = (f : {}
;−→; {x : Int}) →

let c = f {} in

c.x := 1 in

x

The function init is pure because it only modifies object c which is fresh: the constructor f

returns a fresh object. The subtyping rule ensures that init can only be invoked with fresh

functions as arguments.

Subtyping for record types is mostly standard. The subtype needs to define at least the fields of

the supertype but is allowed to include others. This is called width subtyping in [Pierce, 2002],

Chapter 15.2. Because the fields of records are mutable, depth subtyping would be unsound

(cf. Pierce [2002], Chapter 15-5), therefore the field types need to be in invariant order. Finally,

the two record types need to agree on the “local” annotations on their common fields.

74

4.3. Formalization

T ′ <: T
S-REFL

T <: T
S-TRANS

T ′ <: S S <: T

T ′ <: T

S-FUN

T1 <: T ′
1 [x/x ′]e ′ v e [x/x ′]loc′ ≤ loc [x/x ′]T ′

2 <: T2

(x ′ : T ′
1)

e ′
−→loc′ T ′

2 <: (x : T1)
e−→loc T2

S-REC

l ⊆ l ′ ∀i .l ′i = li ⇒ (T ′
i

<: Ti)∧ (Ti <: T ′
i)∧ ([local] l ′i = [local] li)

{[local] l ′ : T ′} <: {[local] l : T }

[locx /x]T

[locx /x]{[local] l : T } = {[local] l : [locx /x]T }

T = (y : T1)
e−→loc T2 y = x

[locx /x]T = (y : [locx /x]T1)
e−→loc T2

T = (y : T1)
e−→loc T2 y 6= x

[locx /x]T = (y : [locx /x]T1)
[locx /x]e−−−−−−→[locx /x]loc [locx /x]T2

loc′ ≤ loc

loc′ ≤ any

x ′ ⊆ x

x ′ ≤ x

[locx /x]loc (loc = any)∨ (x ∉ loc)

[locx /x]loc = loc
x ∈ x

[any/x]x = any

x ∈ x

[x ′/x]x = (x \ x), x ′

e ′ v e , [x/x ′]e similar to loc′ ≤ loc, [x/x ′]loc

Figure 4.2: Subtyping for PUR

4.3.2 Typing Rules

The typing statement for an expression of the PUR language takes the form Γ ` p : T ◦ loc ! e.

It assigns a type T , a locality loc and an effect e to the expression p.

An effect x can be understood as a requirement for the expression to be pure: if all variables

in x hold fresh objects, then the expression can only modify fresh state and does not have an

observable effect. Similarly, a locality x says that the expression evaluates to a fresh value if all

variables in x are fresh.

To illustrate how effects and localities are tracked in the typing rules we analyze the example

75

Chapter 4. A Type-and-Effect System for Purity

Γ ` p : T ◦ loc ! e
T-PARAM

x : T ◦ loc ∈ Γ
Γ ` x : T ◦ loc ! ;

T-SUB
Γ ` p : T ′ ◦ loc′ ! e ′ T ′ <: T loc′ ≤ loc e ′ v e

Γ ` p : T ◦ loc ! e

T-ABS
Γ, x : T1 ◦x ` t : T ◦ loc ! e

Γ ` (x : T1) → t : (x : T1)
e−→loc T ◦any ! ;

T-APP
Γ ` f : (x : T1)

e−→loc T2 ◦any ! ; Γ ` a : T1 ◦ loca ! ;
Γ ` f a : [loca/x]T2 ◦ [loca/x]loc ! [loca/x]e

T-LET
Γ ` p : T1 ◦ loc1 ! e1 Γ, x : T1 ◦x ` t : T2 ◦ loc2 ! e2

Γ ` let x = p in t : elim(x,T2)◦ [loc1/x]loc2 ! e1 t [loc1/x]e2

T-REC

Γ ` x : T ◦ loc ! ; locr =⊔
i

{
loci if local li

; otherwise

Γ ` {[local] l = x} : {[local] l : T }◦ locr ! ;

T-SELECT

Γ ` x : {[local] l : T }◦ locx ! ; loc =
{

locx if local li

any otherwise

Γ ` x.li : Ti ◦ loc ! ;

T-ASSIGN

Γ ` x : {[local] l : T }◦ locx ! ;
Γ ` y : Ti ◦ locy ! ; e =

{
locx t locy if local li

locx otherwise

Γ ` x.li := y : {[local] l : T }◦ locx ! e

elim(x,T) = elim(x,T,any)
T = {[local] l : T ′}

elim(x,T, loc) = {[local] l : elim(x,T ′, loc)}

T = (y : T1)
e−→loc T2 y 6= x loc′x = if (locx = any) ;, else any

elim(x,T, locx) = (y : elim(x,T1, loc′x))
[locx /x]e−−−−−−→[locx /x]loc elim(x,T2, locx)

Figure 4.3: Typing Rules for PUR

76

4.3. Formalization

from Section 4.3:

let c = {x = 1} in

let inc = (_ : {}) →
let v = c.x in

c.x := v +1 in

let _ = inc {} in

let r = c.x in

r

In the typing rule for object literals T-REC, the final locality joins all localities of the values

stored in local fields. In other words, an object literal is fresh if all local fields contain fresh

values.

The object literal {x = 1} is therefore fresh: the locality of the number 1 is irrelevant since it is

stored in a non-local field. By typing rule T-LET, the typing environment for the let-body is

extended with c : {x : Int}◦ c.

In the body of function inc, the assignment to c.x has effect c : for an assignment to a non-local

field, the rule T-ASSIGN sets the effect to be the locality of the modified object. The increment

function thus has type (_ : {})
c−→c {x : Int}.

The types and effects for the rest of the program are straightforward. The invocation of inc

has effect c and the resulting value r has type Int. The application of typing rule T-LET for the

outermost let binding finally defines the overall type and effect of the program. Variable c gets

out of scope and is substituted by its initial locality, and we obtain the pure typing Int◦any ! ;:

Γ ` {x = 1} : {x : Int}◦; ! ; Γ,c : {x : Int}◦ c ` bodyc : Int◦any ! c

Γ ` let c = {x = 1} in bodyc : elim(c,Int)◦ [;/c]any ! [;/c]c

The role of the meta-function “elim” is discussed later in Section 4.3.2.

To illustrate how ownership and local field updates are tracked in the type system we define a

constructor function newHC that returns a fresh object containing a counter:

let newHC = (_ : {}) → type (_ : {})
;−→; {local c : {x : Int}}

let k = {x = 0} in

let r = {local c = k} in

r

For the record literal {local c = k}, typing rule T-REC assigns locality k since the value k is

stored in a local field. When the variable k gets out of scope, the rule T-LET applies the

substitution [;/k] and the function body is typed as fresh. The function newHC therefore has

type (_ : {})
;−→; {local c : {x : Int}}.

We introduce two type aliases: type K = {x : Int} and type H = {local c : K }. The following

77

Chapter 4. A Type-and-Effect System for Purity

function is a setter which updates the counter field in an object of type H :

let setC = (hc : H) → type (hc : H)
;−→any (k : K)

hc,k−−−→hc H

let g = (k : K) → hc.c := k in

g

Because the setter assigns to a local field, its effect includes the localities of both the modified

object hc and the stored object k. We examine a program which creates a new object holding

a counter, changes the counter value and finally resets it using the setter:

let h = newHC {} in

let _ = (let z = h.c in z.x := 2) in

let s = setC h in

let r = s {x = 0} in

r

The effect of the assignment z.x := 2 in the second line is z. By rule T-SELECT the initial locality

of z is h because it is defined as a selection of a local field of object h. When the variable z gets

out of scope, the typing rule T-LET replaces it by its initial locality, therefore the second line

has the effect h.

The setter function s is defined as a partial application of the curried setter setC. The typing

rule T-APP computes the type of s by applying the substitution [h/c] to the result type of setC,

which yields the function type (k : K)
h,k−−→h H . The invocation of the setter s to the fresh object

{x = 0} therefore has the effect [;/k](h,k) = h.

The rule T-LET computes the effect of the let binding for variable h, which is the overall effect

of the example, by substituting references to h by its initial locality, i.e., ;. Consequently the

example type checks as pure.

Closures With Effects on Captured Variables

In typing rule T-LET, the meta-function “elim” is used to eliminate references to the bound

variable in the result type, or more precisely, in effect and locality annotations of function

types in the result type. In the following example the function g has type (_ : {})
;−→c {x : Int}:

let f = let c = {x = 0} in

let g = (_ : {}) → c in

g

Even though f is defined to be the same as g , its type cannot be the same because the local

variable c is not in scope. The intuitive solution is to substitute the initial locality ; for c in the

type of g when variable c gets out of scope. This solution is however unsound: the function f

78

4.3. Formalization

does not return a fresh object on each invocation, instead it always returns the same object.

The following example illustrates this:

let a = f {} in

let o = {local l = a} in

let b = f {} in

b.x := 2

If the function type of f has a fresh result locality, the last two lines of the example type check

as pure: b has the initial locality ;, and the effect on b from the last line is masked. However,

given the definition of f above, the last line does modify existing state, namely the locality of

object o.

This problem is addressed by the meta-function “elim”, which eliminates references to cap-

tured variables from effect and locality annotations in the typing rule T-LET. In covariant

positions, references to the variable are replaced by “any”, in contravariant by ;. The type

of function f is therefore (_ : {})
;−→any {x : Int} and the last two lines of the above example are

typed as impure.

4.3.3 Typing PUR Requires ANF

The reason for using terms in A-normal form in the REL language is related to the fact that

variable names are used as abstract localities to describe the effects of a term. These variable

names can be tracked with little effort in the type system. In a language with non-ANF terms

we could write the following definition:

let f = ((o : {x : Int}) → (_ : {}) → o) {x = 1}

The function f returns the same object on every invocation, so using the result locality ; in its

type is unsound as shown in the previous section.

Using the safe type (_ : {})
;−→any {x : Int} for function f leads to an over-approximation of the

inferred effect in some situations:

let r = let f = ((o : {x : Int}) → (_ : {}) → o) {x = 1} in

let o = f {} in

o.x := 2

In this example, r evaluates to the fresh object {x = 2} and its initialization has no observable

effects. However, given the above function type for f , the locality of o is “any” and conse-

quently the assignment in the last line type checks as impure. In ANF, the object {x = 1} would

be bound to a local variable and the last line would have the effect of modifying that specific

object.

79

Chapter 4. A Type-and-Effect System for Purity

Note that in the typing rules T-ABS and T-LET, the new variable x is always entered into the

typing environment with locality x for typing the subterm. This is required for soundness of

the type system, as shown by the following example:

let a = {x = 1} in

let o = {local f = a} in

a.x := 2

If the variable a is entered into the typing environment with its initial locality, a : {x : Int}◦;,

the assignment is typed as pure even though it modifies the locality of o.

When type checking a source program, a variable binding x in the typing environment always

has locality x, so the localities could be removed from the typing environment in principle.

However the localities in typing environments are used to correctly type check intermedi-

ate terms that occur during evaluation of terms, as shown in the ongoing work on proving

soundness for the type system of PUR [Rytz et al., 2013].

4.4 Implementation of the Purity System for Scala

All examples from the introduction of Section 4.2 are valid Scala programs and use the syntax

for effect annotations supported by the implementation. The purity type system for Scala is

implemented in the form of a compiler plugin, as discussed in Chapter 5.

The overview section highlights the important aspects of the purity type system except for one.

Unlike the formal language REL, mutable state in Scala comes in two flavors: mutable fields of

objects and local variables defined inside methods. The type-and-effect system of REL models

purity with respect to mutable fields, but the implementation in Scala also has to take into

account updates to local variables. The next section describes how these assignment effects

are handled in the type system.

4.4.1 Assignment Effects

Since Scala supports both functional and imperative code, method implementations that use

local variables have to be supported by any practical tool for effect analysis. The following

example shows a method that computes the length of a list in imperative style:

def length[T](l: List[T]): Int @mod() = {
var c = 0
var ls = l
while (ls != Nil) {
c = c + 1
ls = ls.tail

80

4.4. Implementation of the Purity System for Scala

}
c

}

The method has no observable side effect, it only updates the local variables allocated within

the method body.

At first glance, it seems that assignments are irrelevant for the effect of a method because by

definition, updates to local variables are not observable from the outside. This is however

not entirely correct: it is true that the assignments themselves cannot be observed from the

outside, however assignments can change the locality of a variable and impact the scope of

subsequent object modifications:

def incSmaller(a: Counter, b: Counter): Unit @mod(a, b) = {
var c = a
if (b.get < a.get)
c = b

c.inc()
}

In this example the local variable c might either point to a or b, therefore the effect of the

method includes both of its parameters.

The type system presented so far cannot express the effect of assignments to local variables:

the annotation @mod(c) denotes the effect of modifying fields in the locality of object c and not

the effect of re-assigning the variable. For this reason, the effect system introduces a specific

effect annotation @assign(c) which denotes the effect of re-assigning a local variable c.

As explained above, the goal of tracking assignment effects is to know the potential localities

that a variable might point to. This is achieved by attaching to each assignment effect the

locality of the object stored in the variable. In the example method incSmaller, the initial

assignment has effect @assign(c, a) and the second assignment has effect @assign(c, b).

Joining these two effects yields the overall assignment effect @assign(c, a, b) for the method

body which reads as “variable c is assigned objects from the localities a and b”.

Assignment effects are consulted when a variable gets out of scope to substitute references

to that local variable. In the example, the effect of invoking c.inc() is @mod(c). This effect is

not valid for the signature of method incSmaller because the variable c is not in scope in the

signature. The locality c is therefore replaced by the locality that the variable might point to,

which yields the desired effect annotation @mod(a,b).

Assignment effects form a lattice with the following properties:

• @assign() is the bottom element denoting purity

• @assign(any) denotes impurity

81

Chapter 4. A Type-and-Effect System for Purity

• The subeffect relation for a specific variable @assign(x,loc1)v @assign(x,loc2) holds if

loc1 ≤ loc2

• Effects are annotated as a sequence of @assign annotations each describing assignments

to one local variable. The subeffect relation @assign(x,locx)v @assign(y,locy) holds if

∀i .∃ j .@assign(x,locx)i v @assign(y,locy)j

A complete effect annotation in the purity domain consists of both a state effect @mod and an

assignment effect @assign. For syntactic convenience, the system accepts effect annotations

which only specify one of the two effects, in which case it will use the respective purity

annotation @mod() or @assign() for the missing domain.

Since assignment effects are accumulated throughout the scope of a variable and only applied

at the end, the localities of variables are tracked in flow-insensitive manner. This implies that

the effect computed for a block of statements is an over-approximation if it depends on the

order of assignments, as shown in the following example:

def counterGame(a: Counter, b: Counter): Int @mod(a, b) = {
var c = a
c.inc()
if (b.get < c.get)
c = b

c.get
}

We can see that the counter b is never modified, but the system computes the effects @mod(c)

and @assign(c, a, b) which expand to @mod(a, b) as in the previous example.

The implementation of the purity effect system uses assignment effects not only to track

assignments to local variables but also to remember the initial localities of non-mutable local

value bindings:

def incSmaller(a: Counter, b: Counter): Unit @mod(a, b) = {
val c = if (a.get < b.get) a else b
c.inc()

}

The if expression has locality @loc(a, b), which is the join of the localities of its two branches.

Therefore the initial assignment of the local value c has effect @assign(c, a, b). To obtain

the effect for the method signature, the local effect @mod(c) is expanded according to the

assignment effect of variable c, which yields the expected @mod(a, b).

In the examples shown so far, the assignment effects only occur within the body of a method

and are inferred by the effect system. Top-level method cannot have assignment effects in their

signatures because there cannot be any local variables defined their environment which they

could modify. For this reason, assignment effects are usually transparent to the programmer.

82

4.4. Implementation of the Purity System for Scala

Assignment effect annotations can only appear in signatures of nested definitions which act

on their environment, like in the following example:

def outer: Int @mod() {
var i = 0
def inc(): Unit @assign(i, any) = {
i = i + 1

}
inc()
i

}

Note that the locality assigned to variable i is “any”: since primitive values are immutable,

their locality is irrelevant, there cannot be any modification effects on a primitive value.

Section 4.4.4 shows that the unknown locality “any” can safely be used for all objects that have

immutable types.

4.4.2 Flow-Insensitivity to Support Higher-Order Code

The main reason why we designed the purity type system to be flow-insensitive is to make

it compatible with nested definitions, higher-order functions and the generic framework for

polymorphic effect checking introduced in Chapters 2 and 3.

Section 2.1.2 explains why a flow-sensitive effect system cannot easily be integrated with

effect-polymorphism. The effect of each statement in a block of code potentially depends

on the effects of previous statements. In an effect-polymorphic method which abstracts over

the effect of a parameter, the remaining effect of that method has to be expressed in terms

of the abstract effect, which complicates the annotation scheme. Computing the effect of an

invocation of a polymorphic method is also more complex: effects cannot simply be joined

because their order is significant.

The situation is similar for definitions of nested methods that have effects on their environ-

ment. In a flow-sensitive system, the effect of such a nested method depends on the type of

the accessed outer variable. Since this type can change in the course of execution of the outer

method, we need to express the effect of the nested method as a function of the variable’s type

(or over-approximate it).

Our flow-insensitive annotation scheme for purity effects naturally extends to nested method

definitions and higher-order functions. The annotations can simply refer to localities defined

in the enclosing scope, e.g., @mod(c) in the following example:

def test(): Int @mod() = {
val c = new Counter()
def up(): Int @mod(c) = {
c.inc()

83

Chapter 4. A Type-and-Effect System for Purity

}
up()

}

In Section 4.2.4, we observed that flow-insensitivity of the purity effect system occasionally

leads to an over-approximation of a method’s effect:

def f(b: B) = {
val a = new A()
a.localField = b

}

The body of method f only modifies the fresh object a and is therefore pure, but the type

system infers effect @mod(a, b) for the assignment and therefore @mod(b) for the method. A

flow-sensitive type system could keep track of the localities of the involved variables and be

more precise.

Some of the precision of a flow-sensitive type system can be regained by introducing more

expressive effects: an effect annotation @store(hc, someCounter) could express the fact that

object someCounter is stored in the locality of hc, but only the locality of hc is modified.

In our evaluations presented in Section 4.4.4 and Chapter 5, we did not encounter any issues

related to the over-approximation of assignment effects in the flow-insensitive system with

basic @mod effects. Furthermore, the proposed @store annotation cannot fully recover the

expressiveness of a flow-sensitive type system as shown by the following example. It is unclear

if the additional complexity is justified.

def f1(a: A, b: B) = { def f2(a: A, b: B) = {
a.store(b) a.modify()
a.modify() a.store(b)

} }

In a flow-insensitive system both methods have the effect @store(a,b) @mod(a), but the order

in which these effects occur is not encoded. A caller of method f2 must assume that the

locality of object b can be modified.

Note that the flow-insensitivity does not restrict assignments to an object’s locality. Neither

does it require the programmer to declare the locality that an object may point to. As explained

in Section 4.2.4, the system allows assigning arbitrary values to the locality of an object and

uses @mod effects to keep track of the assignments that occur in the scope of the variable.

4.4.3 Polymorphic Purity Effects

Since the purity effect system is flow-insensitive and both of its effects, @mod and @assign,

form a lattice, the system can be integrated with the framework for polymorphic effect check-

84

4.4. Implementation of the Purity System for Scala

ing presented in Chapter 3. This ensures correct effect inference for common higher-order

programming patterns that involve local state.

As an example, we consider the implementation of a method that computes the length of a list

using the higher-order method foreach:

def length[T](l: List[T]): Int @mod() = {
var c = 0
l.foreach(x => c = c + 1)
c

}

Effect analysis of the method length works similar to the examples presented in Section 3.3.2:

method foreach has the effect of its argument function, and the function literal has the refined

type

(T => Unit) { def apply(x: T): Unit @assign(c, any) }.

The overall effect of the method body is therefore @assign(c, any), which is masked once the

variable c gets out of scope.

Polymorphic effect checking works in the same way for @mod effects. One example is the

method filter of the Scala collections library presented in Section 3.3.3. More examples are

discussed in Chapter 5.

Note however that effect-polymorphism does not abstract over the result locality @loc of a

parameter method. Locality annotations are not effect annotations, instead they describe the

freshness of the objects that a method returns. Effect-polymorphic methods do not abstract

over the freshness of their parameter function, as illustrated in the following example:

type CounterFactory = (() => Counter) {
def apply(): Counter @mod(any) @assign(any) @loc()

}
def buildNew(f: CounterFactory): Counter @pure(f) @loc() = {
val c = f()
c.inc()
c

}

Because buildNew is effect-polymorphic in the apply method of its argument function, it can

be marked as @pure even though the apply method may have arbitrary effects. The freshness

annotation @loc() on the apply method is required for the example to type check. Without it,

the value obtained by invoking f() would have an unknown locality, the modification c.inc()

would have an unknown effect and the returned value c would not be fresh.

85

Chapter 4. A Type-and-Effect System for Purity

4.4.4 Examples and Limitations

In this Section, we evaluate the expressiveness of our purity effect system by analyzing the

implementations of the core data structures in the Scala collections library.

Figure 4.4 shows the trait TraversableLike which implements the basic operations for im-

mutable collections such as map or filter. Note that these operations are inherited by mutable

collection classes and remain immutable operations: for instance, calling map on a mutable set

returns a new mutable set with the transformed values and leaves the original set unchanged.

trait CanBuildFrom[-From, -Elem, +To] {
def apply(): Builder[Elem, To] @pure @loc()

}

trait TraversableLike[+A, +Repr] {
def foreach(f: A => Unit): Unit @pure(f)

def newBuilder: Builder[A, Repr] @pure @loc()

def filter(p: A => Boolean): Repr @pure(p) = {
val b = newBuilder
for (x <- this)
if (p(x)) b += x

b.result
}

def map[B, That](f: A => B)(implicit bf: CanBuildFrom[Repr, B, That])
: That @pure(f) = {

val b = bf()
for (x <- this) b += f(x)
b.result

}
}

Figure 4.4: Base Trait of Scala Collections

To infer the effect of method filter the type system first considers the invocation of method

newBuilder. This method is pure and returns a fresh object which is assigned to b. The body

of the for comprehension has the effect @mod(b) from the invocation of += and it inherits the

relative effect @pure(p) (see Section 3.3.3). The for comprehension desugars to an invocation

of the effect-polymorphic method foreach, so it has the effect of its body. Since the invocation

b.result is pure and the effect @mod(b) on the fresh object b can be masked, only the relative

effect @pure(p) remains.

The implementation of method map uses one additional component, the implicit parameter of

type CanBuildFrom, also called the “builder factory”. The builder factory allows method map to

86

4.4. Implementation of the Purity System for Scala

be polymorphic in the resulting collection type, as explained in [Odersky and Moors, 2009,

Chapter 6]: invoking the method map on a BitSet should return another BitSet if the result

type B is Int. In all other cases, the return type of map is Set[B].

In order to verify purity of the implementation of map, the apply method in class CanBuildFrom

is required to return a fresh object, similar to the method newBuilder which is used in the

implementation of method filter.

Freshness of Immutable Values

Immutable values are common in Scala. For example, the Scala collections library provides

various immutable collection types. Also strings and primitive values like integers are im-

mutable.

In our purity type system, the locality assigned to an immutable value is irrelevant because

it cannot be affected by effects. This implies that objects of immutable types can safely be

assigned the unknown locality @loc(any): there is no advantage in marking an immutable

object fresh because the object cannot be modified and there are no effects that freshness

could mask.

The advantage of using the unknown locality for immutable objects is that it enables structural

sharing. As an example we look at the implementation of method dropWhile in the parent trait

TraversableLike:

trait TraversableLike[+A, +Repr] {
def dropWhile(p: A => Boolean): Repr @pure(p) = {
val b = newBuilder
var go = false
for (x <- this) {
if (!go && !p(x)) go = true
if (go) b += x

}
b.result

}
}

The method skips all elements until p(x) becomes false and then creates a new collection

containing the remaining elements. In class List, which extends TraversableLike, the method

can be implemented more efficiently: thanks to immutability, it is not necessary to copy the

list and we can safely return a tail of the current list.

class List[+A] extends TraversableLike[A, List[A]] {
override def dropWhile(p: A => Boolean): List[A] @pure(p) = {
@tailrec def loop(xs: List[A]): List[A] @pure(p) =
if (xs.isEmpty || !p(xs.head)) xs // no copying required

87

Chapter 4. A Type-and-Effect System for Purity

else loop(xs.tail)
loop(this)

}
}

Because the object returned by method dropWhile in class List is aliased from the current list

this, the method cannot be annotated fresh. For type soundness, overriding rules enforce that

the result type of an overriding method is a subtype of the result type in the superclass. Conse-

quently the method dropWhile cannot be annotated fresh in the base trait TraversableLike as

this would rule out the optimized implementation in class List2.

For mutable collections on the other hand, the operations defined in trait TraversableLike

are expected to return freshly allocated, non-aliased results. Using the purity type system

we can statically check this implementation constraint by annotating the methods as fresh.

In order to be able to annotate the method it has to be overridden in the mutable collection

implementation:

class HashSet[A] extends TraversableLike[A, HashSet[A]] {
override def dropWhile(p: A => Boolean): List[A] @pure(p) @loc() = {
// ...

}
}

The problem is that the override cannot simply invoke super.dropWhile(p): because the

implementation in the parent is not marked fresh, that invocation leads to an effect type error,

namely the localities do not match.

To avoid code duplication, the implementation of dropWhile in parent trait TraversableLike

can be refactored to delegate to a protected helper method dropWhileImpl which is annotated

fresh. In the subclass HashSet, the override can then invoke the fresh method dropWhileImpl

and type check as fresh.

While the type system in its current form is capable of expressing the freshness properties of

the mentioned methods, the fact that code has to be refactored is not ideal. One direction to

improve the situation is to enhance the expressiveness of freshness annotations, possibly with

freshness parameters.

Another idea is based on the observation that the locality of immutable objects is irrelevant,

since they cannot be mutated. This implies that treating any immutable object as fresh is

safe, even if there exist unknown aliases to it: freshness of an object can only be used to mask

modification of that object. Since immutable objects cannot be changed, marking them fresh

cannot lead to any additional effect masking.

2 For annotating dropWhile fresh in the base trait TraversableLike, the method result in trait Builder would
be required to have result locality @loc(this). While this is desirable for builders of mutable collections, it is too
restrictive for builders of immutable collections and leads to the issues as described in the next subsection, 4.4.4.

88

4.4. Implementation of the Purity System for Scala

With this observation, the method dropWhile in class List could safely be annotated fresh

because it returns an immutable object. To enable the type system to reason about immutabil-

ity of objects, techniques similar to those introduced by Tschantz and Ernst [2005] could be

incorporated.

Immutable Objects are Used as Fresh

The fact that immutable objects can safely be shared is not only used in the context of im-

mutable data structures, but in some cases also for mutable classes. For example, because

iterators are mutable objects, the method iterator of a collection class is required to return a

fresh object on each invocation, i.e., it is annotated fresh.

For empty collections it is safe to always return the same global object Iterator.emptybecause

this object does not have any mutable state. One example is the class immutable.HashMapwhich

only represent empty maps Non-empty maps are instances of one of its subtypes:

class HashMap[A, +B] {
def iterator: Iterator[(A,B)] @pure @loc() = Iterator.empty

}

This definition produces an effect type error because the returned object is not fresh, therefore

an effect cast is required. We could solve this issue with the extension mentioned in the

previous section that enables the type system to track immutability of objects.

Collections Containing Fresh Objects

Most of the examples discussed in this chapter describe implementations of pure methods

that use local mutable state. For example, a mutable builder is used in filter and map to

collect the elements of the resulting collection. In the examples discussed up to this point, the

algorithm only modifies the builder itself, but never the elements stored inside the builder. To

verify purity of the implementation of filter, the type system needs to know the freshness of

the builder, but the locality of the accumulated elements is not relevant.

There are however situations in which an algorithm stores freshly allocated, mutable objects

in a data structure and modifies them later on. One example is the implementation of method

groupBy in trait TraversableLike:

1 trait TraversableLike[+A, +Repr] {
2 def groupBy[K](f: A => K): immutable.Map[K, Repr] @pure(f) = {
3 val m = mutable.Map.empty[K, Builder[A, Repr]]
4 for (elem <- this) {
5 val key = f(elem)
6 val bldr = m.getOrElseUpdate(key, newBuilder)

89

Chapter 4. A Type-and-Effect System for Purity

7 bldr += elem
8 }
9 val b = immutable.Map.newBuilder[K, Repr]

10 for ((k, bldr) <- m)
11 b += ((k, bldr.result))
12 b.result
13 }
14 }

For each element of the current collection, line 5 computes the key in the resulting map using

the parameter function f, and line 7 adds the element to a builder which corresponds to that

key. The builders for each key are freshly created using newBuilder when necessary and stored

in the local mutable map m.

However, the locality of the builder object bldr obtained in line 6 is unknown: the method

getOrElseUpdate in the map class is not annotated fresh because that would not allow the

function to return any existing object. For this reason, the effect system infers the effect

@mod(any) for the invocation bldr += elem.

With the type system presented in this chapter, the issue can only be circumvented by casting

the locality of bldr to @loc(). In the future, we plan to address the problem by allowing

locality annotations to appear on type parameters. For instance, an optional value which is

only allowed to store freshly allocated values of type T would have type Option[T @loc()]. A

similar solution is used in the work by Dietl et al. [2007] on Generic Universe Types where type

parameters can be instantiated according to the ownership of the stored value. For instance,

the type rep Set<rep T> denotes a set, owned by the current object this, which can only

contain objects owned by this.

Caches

Cache update operations are side effects that should be transparent to clients of a function.

For example, the implementation of a recurring calculation could be improved by caching

results. However, the process of updating a cache is a side effect on program state that is not

allocated within the function and the function cannot be considered pure by our effect system.

There are multiple examples of caching in the context of the Scala collections library, for

instance in the implementation of immutable hash maps. Elements of the hash map are

key-value pairs represented as instances of the class HashMap1:

class HashMap1[A,+B](key: A, hash: Int, value: B, var kv: (A,B))

The variable kv, initially set to null, is a cache used to improve the performance of traversals

of the hash map. Method foreach takes a function of type (A, B) => Unit as argument. In

order to invoke the argument function, a new object of type Tuple2 has to be allocated for each

90

4.4. Implementation of the Purity System for Scala

key-value pair in the map. Since most operations on collections are implemented in terms

of foreach, these tuples are cached to avoid re-creating them for each traversal. This implies

that method foreach has not only the side effect of its argument function, but additionally the

effect of modifying the cache.

The purity type system presented in this chapter cannot verify the fact that modifications

to the cache are not observable for clients that use an immutable hash map, and it requires

an effect cast on method foreach. The problem is that the cache is not local state which is

allocated and modified within a method; instead, the same state is accessed and modified

across multiple method calls.

A second example for a collection implementation that uses caching is the class Vector in

which the elements are stored in nested arrays as explained by Bagwell and Rompf [2011].

Every access to an element involves an array lookup at each nesting level. Since vector

elements are often accessed in sequence, the lookup operation caches a pointer to the array at

each level. If the index of a subsequent lookup uses the same trace of arrays, the intermediate

lookup operations do not need to be performed again. Like in the previous example, the effect

of writing the caches in the lookup method cannot be masked automatically and has to be

handled with a cast.

For convenience, the use of caches could be simplified by introducing an annotation @cache

which designates state that is used only for caching. The type system could then allow updates

to caches in pure contexts. This solution, which is equivalent to using effect casts, hence

unsound, is used in the work on reference immutability by Tschantz and Ernst [2005]. Verifying

that caches cannot change the outcome of operations is beyond the scope of the type system

presented in this chapter and requires advanced static analysis with global knowledge.

Concrete Collection Classes

Most immutable data structures in Scala use structural sharing so that update operations

return a new data structure which shares parts of the representation with the original instance.

One example are tree sets and tree maps based on immutable red-black trees that admit

arbitrary sharing. Hash sets, hash maps and vectors on the other hand are implemented using

nested mutable arrays, so called hash tries. Update operations create a copy of the arrays that

need to be changed to represent the updated data structure, however the unchanged arrays

are shared between multiple instances. Since state modifications are performed on arrays that

are cloned within a method (copy-on-write), the modification effects can be masked and the

effect system is able to verify purity of update operations.

A special case is the List class which is implemented using two subtypes, the object Nil and

the class for list nodes ::. Surprisingly, the fields that store the current element and the tail of

the list in class :: are not stable values, but variables:

91

Chapter 4. A Type-and-Effect System for Purity

final case class ::[B](private var hd: B, private[scala] var tl: List[B])
extends List[B] {
def head : B = hd
def tail : List[B] = tl

}

One reason is that the list class uses a custom, more compact serialization format and therefore

needs the ability to write the fields on deserialization.

There is another reason for the tl field to be mutable: it enables implementing the mutable

ListBuffer class with constant-time prepend, append and result methods. The class appends

elements to the list that is being constructed by creating new :: nodes and updating the tl

field of the current list. The result method returns a pointer to the constructed list, but also

marks the list buffer as “exported”. When an element is appended to an exported list buffer,

the internal list is first cloned in order to avoid side effects on the previously exported list.

The operations on the list buffer only modify its internal state, but since list nodes have

unknown localities, the effect system cannot express this property. The implementation of

ListBuffer requires a number of effect cast annotations.

Mutable collections are typically implemented using private state which is not shared across

instances. Ownership annotations enable the effect system to show that the effect of an update

is contained within an instance of a mutable collection.

Mutable hash sets and hash maps are implemented using hash tables, which store the elements

of the collection in an array indexed by hash codes. The field holding the array is annotated

@local which enforces that an array cannot be shared across instances. The update operations

perform modifications on that array and are annotated @mod(this). If the array needs to be

resized to accommodate more elements, a new array is created, initialized and assigned to the

local field in the hash table. This is also allowed by the effect annotation @mod(this).

Mutable linked lists have a variable field in each node that points to the next list element. This

field is annotated @local, which implies that all nodes reachable from the current node are

part of its locality.

class LinkedLst[T] {
var elem: T = _

@local var next: LLst[T] = this

def append(that: LinkedLst[T]): Unit @mod(this, that) = {
if (isEmpty) {
elem = that.elem
next = that.next

} else {
if (next.isEmpty)
next = that

else

92

4.5. Related Work

next.append(that)
}

}
}

The effect of append includes both objects this and that because the argument object is stored

in the locality of the current list. This is explained in Section 4.2.4.

4.5 Related Work

The type system presented in this chapter is strongly influenced by JPure, a purity system for

Java by Pearce [2011]. Our notions of locality and freshness are equivalent to theirs.

In contrast to our system, JPure tracks the freshness of local variables in a flow-sensitive

manner. While being more precise in some situations, a flow-sensitive system is difficult

to integrate into a language with nested methods and higher-order code. Based on our

experience with Scala, we believe that the additional precision is not essential in practice.

Note that flow-insensitivity does not restrict the values that can be assigned to a local variable:

var x = a
if (condition) x = b
x.modify()

Even though the local variable x initially has locality a, assigning b to it is allowed. The effect

system uses the effect @assign(x,b) to keep track of the locality of x. More precisely, the overall

effect of the three statements is “@assign(x,a) @assign(x,b) @mod(x)”. When variable x gets

out of scope, this effect is translated to @mod(a, b).

The flow-insensitivity leads to imprecise effect inference in some situations. Consider the

above example where the last two lines are switched:

var x = a
x.modify()
if (condition) x = b

Effect inference applies the exact same procedure as in the original example and the computed

effect is still @mod(a, b) even though b is not modified.

Another difference when comparing with JPure is that our system allows effect and locality

annotations to refer to parameters and variables from the enclosing scope. This is essential for

integration in higher-order languages. Effect annotations in JPure can only refer to a method’s

parameters.

A method annotated @Fresh in JPure will always return a freshly allocated object, while all

93

Chapter 4. A Type-and-Effect System for Purity

other methods return objects with unknown locality (annotated @loc(any) in our system). Our

type system allows defining the locality of the returned object more precisely, which enables

expressing the behavior of getters for local fields. If an object is known to be fresh, then the

values stored in its local fields are guaranteed to be fresh as well. The getter of a local field

returns a fresh object if the owner object is fresh, which is expressed as @loc(this) in our

system. In JPure the getter is annotated non-fresh, therefore modifying a local field of a fresh

object has the unknown effect if the field is accessed through its getter.

In addition the purity effect system, JPure provides an inference tool that analyzes existing

libraries for pure methods and generates effect and freshness annotations. They applied their

inference algorithm to a subset of the Java library and show that 40% of the analyzed methods

are pure.

4.5.1 Regions

In the history of type-and-effect systems, the most widely used solution to control aliasing

are regions. In a such an effect system, the store is split up in multiple distinct areas, so called

regions, and each reference is allocated within a specific region. Side effects are expressed as

read, write and allocation effects on those regions. Effect systems based on regions include

the original polymorphic effect system by Lucassen and Gifford [1988], the work on type,

region and effect inference by Talpin and Jouvelot [1992b] and more recently the effect system

for deterministic parallel Java (DPJ) by Bocchino et al. [2009]. The process of hiding non-

observable effects on locally allocated state was given the name effect masking in the article of

Lucassen and Gifford [1988].

The annotation overhead of region based effect systems is typically large because functions

that modify or allocate state need to be extended with region parameters. For languages like

Scala, global type, region and effect inference is not a viable solution because it would be a

departure from the fundamental concepts of the language. Furthermore, type inference in

the presence of subtyping is known to be complex and leads to long type signatures and error

messages that are difficult to understand. Hoang and Mitchell [1995] discuss the difficulties

that subtyping causes to type inference. Another challenge for type inference is overloading,

as explained by Smith [1994].

4.5.2 Ownership Types

A different approach to control aliasing is presented in the work on ownership types, first

introduced by Clarke et al. [1998]. In an ownership type system, the representation of an object,

a subset of the state that is accessible through its fields, is owned by the object. Access to

the representation of an object is only allowed through that object, but not directly from the

outside. The type system prevents aliases from the outside into the representation of an object.

94

4.5. Related Work

Clarke and Drossopoulou [2002] introduce an effect system based on ownership types that

can show non-interference of expressions whose effects are distinct.

Similar to ownership types, our system uses @local annotations to denote the internal rep-

resentation of objects. The fundamental difference is that ownership type systems enforce a

global aliasing discipline which ensures that private state can never be accessed from the out-

side. This enables a strong guarantee: when modifying the representation of an object at any

point in time, the system ensures that objects outside the representation remain unchanged.

Our effect system allows arbitrary aliasing and does not have any knowledge about the global

structure of the heap. Instead it exploits local knowledge about the freshness of objects, which

only holds if the entire representation of the object is known to be fresh. Modifications to fresh

objects in a function are masked because they are not observable by its clients.

The strict encapsulation in ownership types has proven to be too restrictive, i.e., common

programming patterns cannot be expressed, for example the use of an iterator. Boyapati et al.

[2003] present a variant of ownership types in which objects of a nested class have privileged

access to its ancestors in the ownership tree and objects they own. Their system can express

constructs like iterators that share owned state while remaining modularly checkable.

In their work on universe types, Dietl et al. [2007] take a different approach to lift the restric-

tions of ownership type systems. The original ownership type system enforces the owner-

as-dominator discipline in which each reference to an object has to go through its owner.

Universe types propose a more permissive owner-as-modifier discipline where arbitrary ref-

erences are allowed, however modifications to an object are only allowed through its owner.

The system features pure methods which are, like in our effect system, methods that do not

modify any state that existed before their execution. Similar to ownership types, universe

types provide a stronger guarantee than our system but are coupled with a global aliasing

discipline.

4.5.3 Pointer Analysis

There exist a number of purity systems based on pointer analysis. The goal of pointer analysis,

or points-to analysis, is to determine the set of objects that a variable or field might point to. A

recent article by Sridharan et al. [2013] presents an overview on the state of the art in pointer

analysis for object-oriented programs.

Sălcianu and Rinard [2005] present a purity system based on a combined pointer and escape

analysis. Their analysis can distinguish objects allocated within a method from objects that

existed before the method was invoked. Consequently, non-observable effects like the use of

an iterator can be masked. Based on the results of the analysis, their system generates regular

expressions that characterize the heap locations a method modifies.

95

Chapter 4. A Type-and-Effect System for Purity

Kneuss et al. [2013] present a static analysis for side effects that is precise even in the pres-

ence of callbacks, which are common in languages with higher-order functions. Analyzing

higher-order code is challenging because the number of targets for the invocation of a param-

eter function is potentially very large. Their system represents effects as control flow graph

summaries which may contain delayed method calls. These summaries essentially express

effect-polymorphism similar to relative effects presented in Chapter 3.

Purity systems based on pointer analysis have a different focus than type-and-effect systems.

Pointer analyses are interprocedural and typically analyze entire programs at once. There are

attempts to make program analyses more modular. The recent work by Ali and Lhoták [2013]

shows how libraries can be analyzed separately from programs that are using them. Instead of

creating custom signatures, their system generates lightweight replacement binaries that can

be used with existing analysis tools instead of the original libraries. Another example is the

modular effect analysis by Cherem and Rugina [2007] which analyzes libraries separately and

generates effect and aliasing summaries. Type systems are modular at the level of individual

methods. Verification of a method implementation is based solely on the signature of invoked

methods. Modular verification is known to scale well to large programs, while scaling can be

challenging for whole program analyses.

Another difference is that the effect systems presented in our thesis focus on lightweight effect

annotations that programmers are willing to write and able to understand. The raw effect

information obtained through alias analysis is too verbose to be presented to programmers.

The main strength of program analysis is that it does not require any effect annotations and

can be used to perform effect inference. The inference tool for JPure by Pearce [2011] makes

use of existing techniques for program analysis to generate effect annotations for large libraries

such as the Java standard library.

4.5.4 Other Related Work

Javari by Tschantz and Ernst [2005] is a type system for tracking reference immutability for

Java. If a field or local variable is annotated readonly, then that reference cannot be used to

modify any of the objects that are transitively reachable through the reference. The system

however allows other references to the same object to exist, which can be mutable references.

Reference immutability can ensure that a method does not modify its argument, or that an

object or array returned by a method can never be modified by its clients. This guarantee can

prevent unnecessary copying of exposed state.

Huang et al. [2012] present a purity type system based on reference immutability. Their

inference system scales to large programs and is able to discover a significant number of

pure methods in existing Java libraries using an effect inference tool. The type system cannot

express the notion of returning a freshly allocated object, therefore patterns like the use of an

iterator are in principle impure. In the implementation they use a small number of special

96

4.6. Conclusion

cases to deal with some of these situations.

Finifter et al. [2008] present a purity system for Java that uses a stronger notion of purity: in

addition to the absence of side-effects, a pure method is required to be deterministic. When a

pure method is invoked with equal arguments, then it always has to return the same result.

Equality of objects can be defined by the user; the notion of determinism is parameterized

by the equality definition. The parameters of a pure method are marked immutable, which

ensures that no object obtained through a parameter can be modified within the method.

The system allows pure methods to modify freshly allocated state: when invoking an impure

method from the body of a pure method, the argument objects are required to be mutable.

Since all parameters of the pure method are immutable, these arguments are necessarily

freshly allocated. Unlike our work, their system does not track freshness across methods.

The state monads described by Launchbury and Peyton Jones [1994] can encapsulate local

state within the implementation of an externally pure algorithm. The technique of using

monads to control effects is described in Section 1.3.2.

There is a large body of related work in the area of program verification, which we discuss in

Section 1.3.4.

4.6 Conclusion

In this chapter we presented a type-and-effect system for verifying purity of methods that

do not modify program state that existed before their execution. The effect system builds on

ideas from JPure, a purity system for Java by Pearce [2011].

State modification effects are difficult to track because of aliasing. Instead of tracking aliases

in a program globally, our purity system only identifies state that is freshly allocated within

a method and masks effects on that fresh state. To identify fresh state, the effect system

uses ownership annotations on fields and locality annotations on methods that describe the

freshness of returned objects. The effect system is flow-insensitive, which makes it suitable for

languages with higher-order functions and nested definitions such as Scala.

We integrated the effect system as an effect domain into the generic framework for effect

checking from Chapters 2 and 3. The implementation for Scala can verify purity of program-

ming patterns that mix higher-order code with side effects, such as using an iterator or copying

a collection using a mutable builder.

In the future we plan to complete the preliminary work proving soundness of the effect

system [Rytz et al., 2013]. We plan to improve the expressiveness of the purity system by

enabling locality annotations on type arguments, which allows tracking fresh objects stored in

data structures as explained in Section 4.4.4. Finally, an inference tool that generates effect

annotations for existing code would reduce the initial effort of adopting our effect system.

97

Chapter 4. A Type-and-Effect System for Purity

Such a tool can be based on the work by Kneuss et al. [2013] which performs global effect

inference for purity and effect-polymorphism.

98

Chapter 5

Effect Checking in Scala

We combined the type-and-effect systems presented in this dissertation into an implementa-

tion in the form of a compiler plugin for the Scala programming language. Specifically, this

effect system implements the generic effect system for multiple effect domains presented in

Chapter 2 where effect-polymorphic functions are expressed using relative effect annotations

like in Chpater 3 and it incorporates the effect system for purity presented in Chapter 4.

All code examples presented in the previous chapters are valid Scala programs and use the

syntax for effect annotations supported by the implementation. This chapter explains how

programmers can use the effect system to verify side effects in their code, how it can be

extended to support new effect domains and how effect checking is integrated into the Scala

compiler.

5.1 Programming With Effects

The implementation of our effect system for Scala has the form of a compiler plugin compatible

with an official release of the Scala compiler (version 2.10.2 at the time of writing). The

plugin can be obtained from its project page which gives access the source code, up-to-date

information and an issue tracker for bug reporting; the project page is located at https:

//github.com/lrytz/efftp.

The Scala compiler has multiple modes of operation, all supported by the compiler plugin.

The batch compilation mode is used for normal compilation on the command line, when

using a build tool or when building a project within a development environment such as

Eclipse, IntelliJ IDEA or Netbeans IDE. By default, effect mismatch errors are reported by the

compiler on the command line, but IDEs typically intercept error messages and provide links

to the erroneous locations in the source files.

99

https://github.com/lrytz/efftp
https://github.com/lrytz/efftp

Chapter 5. Effect Checking in Scala

Figure 5.1: Scala IDE for Eclipse Running the Effects Plugin

The second mode of operation is used in the Scala interpreter, a classical read-eval-print

loop, and in Scala worksheets in Eclipse and IntelliJ IDEA. These tools are typically used for

exploring libraries and trying out ideas. Effect checking works in the same way as in the batch

compiler; effects are checked whenever an expression is compiled and evaluated.

Finally, the resident mode of the Scala compiler is used within some IDEs to support advanced

editing features such as code completion, hyperlinking, displaying the type of an expression

and, error highlighting as you type. When the compiler plugin for effects is enabled in the

resident mode of the compiler, effect errors are reported to the programmer immediately

when writing a statement which has a larger effect than allowed by the signature of the method.

This feedback is displayed sooner than the errors reported by the batch compiler when the

project is built. Figure 5.1 shows a screenshot of the Scala IDE for Eclipse with the effects

plugin activated in the presentation compiler. There are a number of other tools that use the

resident mode of the Scala compiler for interactive editing, for instance the Netbeans IDE1

and the Ensime plugin for Emacs2 or Sublime Text3. Effect checking can be enabled in these

tools in the same way as in the Scala IDE for Eclipse.

The current implementation supports effect checking for three effect domains: IO, exceptions

and purity with respect to state changes. The following section shows how programmers can

annotate and check effects from these domains in their programs.

1http://wiki.netbeans.org/Scala
2https://github.com/aemoncannon/ensime
3https://github.com/sublimescala/sublime-ensime

100

http://wiki.netbeans.org/Scala
https://github.com/aemoncannon/ensime
https://github.com/sublimescala/sublime-ensime

5.1. Programming With Effects

5.1.1 Annotating Effects in Multiple Domains

The effects of a method are specified in Scala as a sequence of annotations on the method’s

return type. All effect annotations are defined as ordinary annotation classes and no changes

to the language syntax are required to implement effect checking.

To annotate multiple effect domains, the annotations of each domain are placed on the return

type of a method in arbitrary order. For example, the following method has no IO effect and

might throw an exception of type E:

def m(x: T): Unit @noIo @throws[E] = ...

Effects are inferred when the result type of a method is inferred. Methods that have an explicit

result type but no effect annotations are impure, they have the largest possible effect in every

effect domain. Our experience suggests that this simple annotation scheme works well in

practice. However, the ability to infer effects of methods with an explicit return type could be

easily added, for example by introducing an @infer annotation.

The effects in a method signature can be narrowed down by adding explicit effect annotations,

as explained in Section 2.4. In all effect domains which are not annotated, the system assumes

the method to be impure. For example, the method m above has the unknown effect @mod(any)

in the domain of state modifications.

The @pure annotation marks a method as pure across all domains, it changes the default effect

for non-annotated domains to the bottom effect. By adding specific annotations to the return

type the programmer can allow some effects while the method remains pure in the other

domains. For example, a method that might throw an exception but is otherwise pure is

annotated as follows:

def m(x: Int, y: Int): Int @pure @throws[E] =
if (y == 0) throw new E else x / y

Section 3.3 shows that the @pure annotation is also used for annotating effect-polymorphism.

Specifically, relative effects are expressed as argument expressions of the purity annotation,

for example @pure(a.m) denotes the effect of method m of parameter a. Given that effect-

polymorphic methods always have the@pure annotation, their default effect for non-annotated

domains is the bottom effect. This decision is consistent with the formal type system with

relative effects that is presented in Section 3.2.

Annotations for IO, Exceptions and Purity

In the IO domain, there are only two effect annotations: @io for methods that have an IO effect

and @noIo for pure methods.

101

Chapter 5. Effect Checking in Scala

The exceptions that a method may throw are described with the @throws[E] annotation.

This annotation specifies that exceptions of any type conforming to E might be thrown:

for example, the effect annotation @throws[Exception] allows throwing exceptions of type

IOException. Methods that might throw multiple types of exceptions can either have multiple

@throws annotations, or the effect types can be combined with the predefined type operator

“|”, i.e., @throws[E1 | E2]. Pure methods that do not throw any exceptions are annotated

@throws[Nothing].

The effect system for exceptions is equivalent to checked exceptions in the Java programming

language. In Scala it is however not always possible to infer the effect of a try expression

at compile-time, because the case statements guarding exception handlers can be arbitrary

patterns, not just lists of types like in Java:

try {
dubiousOperation()

} catch {
case e if isFullMoon() => ()

}

In this example the exceptions of dubiousOperation are not always caught; the effect system

assumes that the handler does not match and the exceptions are propagated.

Specifically, the system recognizes exception handling patterns of the form “case e: E” that

catch one specific exception type, patterns that catch all exceptions (“case e”) and alternatives

of these patterns, for instance “case _: E1 | _: E2”. All other patterns, including patterns

with a non-empty guard, do not to match, which can lead to an over-approximation of the

actual effect. In the cases where the type system fails to infer the exceptions precisely the

programmer can override the effect system using an effect cast as explained later in this

chapter.

The effect annotations for the purity domain are explained in Chapter 4: Section 4.2 introduces

purity, ownership and result locality annotations, and Section 4.4.1 defines effect annotations

for assignments to local variables.

5.1.2 Ascriptions and Effect Casts

As in ordinary type checking, effect mismatch errors are reported with respect to the location

in the source code where the mismatch occurs. Nevertheless it is sometimes helpful for

programmers to be able to check or document the effect of a statement within a larger piece

of code individually, which can be done with an annotation ascription:

def f(): Unit @pure @io = {
(somePureMethod() : @pure)
someIoMethod()

102

5.1. Programming With Effects

}

The ascription allows the programmer to ensure that the invocation of somePureMethod does

not have any effects.

There are a number of situations in which the effect inferred by the type system is larger than

the actual effect that might occur at run-time. For example, the method get of class Option

throws a NoSuchElementException if the optional value is empty. If a program tests the optional

value for emptiness before invoking get the exception cannot occur, but the effect system does

not take control flow into account and includes the effect:

def f(o: Option[Int]): Int @pure = {
if (o.isEmpty) 0
else (o.get: @unchecked @pure)

}

In order to type check this definition the effect of method get needs to be eliminated with an

effect cast. Syntactically, effect casts are annotation ascriptions with an additional @unchecked

annotation.

In Java, exceptions like NoSuchElementException or NullPointerException that are caused by

client code are unchecked: the effect system allows them to occur in pure contexts [Gosling

et al., 2013, Section 11.1.1]. For practical reasons, adopting this mechanism might also be

desirable in the effect system for Scala.

5.1.3 Annotating Constructors and Default Arguments

The type system with relative effects from Chapter 3 and the effect system for purity from

Chapter 4 both use dependent types: effect annotations can depend on a method’s parameters.

In Scala, the scope of a parameter includes the successive parameter lists, the return type

and the method body. The fact that some effect annotations need to refer to the method’s

parameters is one of the reasons why effects are part of the return type.

Unfortunately, this is not possible for constructors because the syntax of Scala does not allow

the return type of a constructor to be specified explicitly. There are two possibilities for

annotating the effect of a constructor. If the effect annotation does not require the constructor

parameters to be in scope, it can be placed on the constructor definition, or on the class or

object definition for the primary constructor:

class C {
var x = 0

@pure @mod(this) def this(i: Int) = {
this()
x = i

103

Chapter 5. Effect Checking in Scala

}
}

@pure object C {
def fromString(s: String) = new C(s.toInt)

}

Both effect annotations in the above example are optional and can be inferred by the effect

system. Indeed, the effect of the primary constructor of class C is not annotated, but inferred to

be @mod(this) since it initializes the field x of the constructed object. This effect annotation is

however not valid outside the class C: the reference this would be invalid for top-level classes

or point to the outer object for nested classes.

To overcome this issue, constructor effect annotations that refer to parameters can be placed

on a type definition named constructorEffect within the constructor body (or the class

template for primary constructors):

class C {
@pure @mod(this) private[this] type constructorEffect = Nothing
var x = 0

}

The type chosen on the righthand side of the type definition is not relevant. The advantage of

this solution is its compatibility with the current Scala syntax. If future Scala versions allow

constructor type annotations, migrating existing code will be straightforward.

Another special case for annotating effects are default argument expressions. The Scala

compiler translates default arguments to member methods of the enclosing class. Method

invocations that use defaults invoke these default getters. The return type of a default getter is

identical to the corresponding parameter type. To specify the effect of a default expression the

programmer has to annotate the parameter type.

def m(i: Int @pure = 1) = 10 * i

In the current implementation, default getters are impure by default if there are no effect

annotations on the parameter type, which implies that pure default argument expressions

need to be annotated. This is consistent with ordinary methods which are impure if they have

an explicit return type but no effect annotations.

5.1.4 Singleton Objects, Lazy Values and By-Name Parameters

The introduction to type-and-effect systems in Section 2.1 shows that function (or method)

abstractions delay the effect of an expression to the point where the function is invoked. In the

Scala language there are three additional constructs that can delay execution, and therefore

104

5.1. Programming With Effects

effects: constructors of singleton objects, initializers of lazy values and by-name parameters.

Singleton objects and lazy values are initialized on their first access. Because the type-and-

effect system for Scala does not have advanced features like flow-sensitivity or type state,

the initialization status of lazy objects is not known statically. The effect system includes the

initializer effects for lazy values and singleton objects whenever such objects are accessed.

The effect of a singleton object can be either inferred or annotated as explained in the previous

section. For lazy values the syntax is the same as for method definitions: the initializer effect

can be annotated on the type of the value, and it is inferred if also the type is inferred.

A by-name parameter type “=> T” in Scala is essentially syntactic sugar for the nullary function

type “() => T”. When invoking a function with a by-name parameter, the Scala compiler

creates a thunk from the corresponding argument expression. Within the body of the method,

accesses to the by-name parameter are transformed to invocations of the apply method of the

function.

In terms of side effects, each access to a by-name parameter has the unknown effect. However,

functions with by-name parameters are typically effect-polymorphic, hence the effect for the

parameter is computed at call site:

def twice[T](op: => T): T @pure(op) = { op; op }

def t: Int @pure = {
var x = 0
twice { x += 1 }
x

}

Since twice is effect-polymorphic, the invocation in method t has the effect of assigning to

the local variable x, which can be masked when the variable gets out of scope.

5.1.5 Effects Affect Typing and Subtyping

The primary goal of an effect system is to verify that the body of a method can only have side

effects that are allowed by the method signature. To achieve this goal, the effect system needs

to ensure that function values are not propagated in an unsound manner: for example, if a

higher-order function only accepts pure functions as argument, then the type system needs to

reject invocations that pass an impure function as argument. This is achieved by the subtyping

rules.

Since effect annotations are part of method result types in Scala, function types that declare a

specific effect are expressed as refinement types:

type PureFun = (Int => Int) { def apply(x: Int): Int @pure }

105

Chapter 5. Effect Checking in Scala

def appOne(f: PureFun): Int @pure = f(1)

When invoking the function appOne, the apply method of the argument object is checked to be

pure:

object f1 extends Int => Int {
def apply(i: Int): Int @pure @throws[E] = throw new E

}
appOne(f1) // produces a type mismatch error

The fact that effect annotations need to be taken into account when comparing two method

types is an important reason for placing effects on the result type in Scala. Method types

are characterized by the parameter symbols and types and by the result type. In subtyping,

the result types are compared in covariant order, which is exactly what is required for effect

annotations. Section 5.4 explains how the compiler plugin integrates into subtype checking in

the Scala compiler.

When computing the subtyping relation between two types in a nominal type system, the

algorithm usually does not need to compare individual methods of the two types, but instead

just looks at the inheritance structure. For example, if a class Sub extends the superclass

Parent, then Sub <: Parent holds by definition. To ensure soundness, the type system requires

all method overrides to be sound, which implies that the type and effect of an overriding

method is required to conform to the type and effect of the method in the supertype [Odersky,

2013, Section 5.1.4].

For this reason, the definition of method i in trait B in the following example is rejected:

trait A {
def i: Int @pure

}
class B extends A {
def i: Int @throws[E] = throw new E

}

Since the effect system for Scala is implemented as a compiler plugin and effect annotations

have no semantics in the Scala language itself, effect checking can be seen as a pluggable type

system as described by Bracha [2004]. If the compiler plugin is disabled, effect annotations are

simply ignored. Enabling the plugin on the other hand can lead to additional error messages,

i.e., the effect system can reject more programs, but it does not change the semantics of the

compiled code.

Unfortunately, this statement is not entirely true, because the Scala programming language

itself does not have a pluggable type system: there are multiple language features for which

the semantics depends on the type system, for instance overloading resolution and implicit

search. Since the effect system affects the subtyping rules, it can influence the outcome of an

106

5.2. Effect Checking in the Scala Collections Library

implicit search and change the semantics of a program:

def doApply(implicit f: { def m(): Object @pure }) = m()

class A {
implicit val vA: { def m(): String } = ...

}

class B extends A {
implicit val vB: { def m(): Object @pure } = ...

doApply
}

This example does not compile when the compiler plugin is disabled. The invocation of

doApply triggers implicit search for an object of type “{def m(): Object @pure}”, and both

values vA and vB match this type (annotations are ignored since the plugin is disabled). The

Scala type system chooses the more specific of the two values according to the procedure for

overloading resolution defined in [Odersky, 2013, Section 6.26.3]: the value vA obtains one

point for having a more specific return type, but also vB gets one point because it is defined in

a subclass. Compilation therefore fails with the error message “ambiguous implicit values”.

When the compiler plugin is enabled, compilation succeeds: the type of value vA no longer

matches the required argument type because the implicit parameter requires a pure method m.

There remains only one matching implicit value which is therefore inserted by the compiler as

argument in the invocation of doApply.

It is possible to construct similar examples which do compile in plain Scala but fail to compile

when the effects plugin is enabled. We discovered one such case when applying the effects

plugin on the Scala standard library4.

5.2 Effect Checking in the Scala Collections Library

The main benchmark we used for evaluating the effect system is the Scala collections library.

In this section, we highlight the most interesting aspects in terms of effect checking for the

core of the immutable collections.

5.2.1 Option

The effect annotations for class Option in Figure 5.2 are straightforward. In the body of

getOrElse the effect of invoking get is eliminated with an effect cast, since effect checking

4The issue is recorded at https://github.com/lrytz/efftp/issues/1

107

https://github.com/lrytz/efftp/issues/1

Chapter 5. Effect Checking in Scala

does not take control flow into account as explained in Section 5.1.2. Note that the example

uses effect-inference for all constructors and method definitions in the subclasses Some and

None.

trait Option[+A] {
def isEmpty: Boolean @pure
def get: A @pure @throws[NoSuchElementException]
def getOrElse[B >: A](default: => B): B @pure(default) =
if (isEmpty) default else (get: @unchecked @pure)

}
case class Some[+A](a: A) extends Option[A] {
def isEmpty = false
def get = a

}
case object None extends Option[Nothing] {
def isEmpty = true
def get = throw new NoSuchElementException("None.get")

}

Figure 5.2: Type Option

5.2.2 Breaks

Unlike Java, the Scala language does not provide a break statement to break out of a while loop.

There are situations in the collections library where breaks are desired, e.g., when searching

for an element in a collection. The object Breaks in the Scala library defines operators that

allow breaking out of loops by throwing and catching an exception:

object Breaks {
private val breakException = new BreakControl
def breakable(op: => Unit): Unit @unchecked @pure(op) =
try { op }
catch { case ex if (ex eq breakException) => () }

def break(): Nothing @unchecked @pure = throw breakException
}

When invoking the break method within a “breakable { ... }” block, execution resumes

after that block. In the definition presented above, both operators are pure and breakable is

effect-polymorphic, i.e., it has the effect of its argument block.

To make the use of breaks safer, the effect system can enforce the invariant that invoking break

is only valid in a breakable context. For this, the break operation would have an effect, for

instance @throws[BreakException], which is masked by breakable. As explained in Section 3.4,

currently the effect system does not support annotations for effect masking, so the behavior of

breakable has to be implemented as a specific effect typing rule in the compiler plugin.

108

5.2. Effect Checking in the Scala Collections Library

5.2.3 Core Collection Classes

This section presents the core elements of the collections library and shows how effects in

multiple domains are annotated and checked5. The basic design of the collections library

is based on trait TraversableLike and uses builder objects to implement operations. It is

introduced in Sections 3.3.3 and 4.4.4.

trait Builder[-Elem, +To] {
def +=(elem: Elem): Unit @pure @mod(this)
def result: To @pure

}

trait TraversableLike[+A, +Rep] { self: Rep =>
def newBuilder: Builder[A, Rep] @pure @loc()
def foreach[U](f: A => U): Unit @pure(f)
def tail: Rep @pure @throws[NoSuchElementException] = {
if (isEmpty) throw new NoSuchElementException("tail of empty collection")
drop(1)

}
def takeWhile(p: A => Boolean): Rep @pure(p) = {
val b = newBuilder
breakable {
for (x <- this) {
if (!p(x)) break
b += x

}
}
b.result

}
}

Figure 5.3: Base Trait TraversableLike

Figure 5.3 presents the Builder and TraversableLike traits with effect annotations for multiple

domains. The implementation of method takeWhile makes use of effect-polymorphism,

modifications of a local builder object and loop-breaking.

Figure 5.4 shows the most important classes in the parent hierarchy of class List. Trait

IterableLike is extended by all collections that support iteration, and trait SeqLike defines

the apply method for element access in indexed sequences.

The method foreach in trait Iterator uses an effect cast in line 5 to eliminate the exception

effect @throws[NoSuchElementException] for the invocation of next - the exception cannot be

raised because hasNext is true at this point.

5The full example is available on https://github.com/lrytz/efftp/blob/master/tests/src/test/

resources/scala/tools/nsc/effects/multi/Colls-files/colls.scala

109

https://github.com/lrytz/efftp/blob/master/tests/src/test/resources/scala/tools/nsc/effects/multi/Colls-files/colls.scala
https://github.com/lrytz/efftp/blob/master/tests/src/test/resources/scala/tools/nsc/effects/multi/Colls-files/colls.scala

Chapter 5. Effect Checking in Scala

1 trait Iterator[+A] {
2 def hasNext: Boolean @pure
3 def next(): A @pure @mod(this) @throws[NoSuchElementException]
4 def foreach[U](f: A => U): Unit @pure(f) @mod(this) = {
5 while (hasNext) f(next(): @unchecked @pure @mod(this))
6 }
7 }
8

9 trait IterableLike[+A, +Rep] extends TraversableLike[A, Rep] { self: Rep =>
10 def iterator: Iterator[A] @pure @loc()
11 def foreach[U](f: A => U): Unit @pure(f) = iterator.foreach(f)
12 }
13

14 trait SeqLike[+A, +Rep <: SeqLike[A, Rep]] extends IterableLike[A, Rep] {
15 self: Rep =>
16

17 def apply(idx: Int): A @pure @throws[IndexOutOfBoundsException]
18 def iterator: Iterator[A] @pure @loc() = new Iterator[A] {
19 var these = self
20 def hasNext = !these.isEmpty
21 def next() =
22 if (hasNext) {
23 val result = these.head
24 these = these.tail
25 result
26 } else throw new NoSuchElementException("next on empty iterator")
27 }
28 }
29 sealed abstract class List[+A] extends SeqLike[A, List[A]] {
30 def apply(n: Int) = {
31 val rest = drop(n)
32 if (n < 0 || rest.isEmpty) throw new IndexOutOfBoundsException("" + n)
33 rest.head
34 }
35 }
36 final case class ::[+A](override val head: A,
37 override val tail: List[A]) extends List[A]
38 case object Nil extends List[Nothing]

Figure 5.4: Iterators, Sequences and Lists

For most method definitions that implement abstract methods from a parent type, the return

type and effect annotations are omitted, e.g., the methods hasNext and next in line 20 or

method apply in line 30. This does not mean that the effects of these methods are not verified.

For methods without a return type, the effect system infers the effect of the method body and

attaches it to its signature. As explained in Section 5.1.5, override checking ensures that the

effect of a method’s implementation in a subclass conforms to the annotated effect in the

110

5.3. Implementing Effect Domains

parent.

In line 36 in class :: the methods head and tail defined in the parent trait TraversableLike are

overridden with stable values. These overrides are sound since getter methods do not have any

side effects, so the effects in the subclass conform to the @throws[NoSuchElementException]

effects in the parent trait.

As a general pattern, we can observe that effect annotations are required in interface decla-

rations and for defining effect-polymorphic methods. In implementation classes the effects

can often be inferred. Note that the entire example did not require any constructor effect

annotations.

5.3 Implementing Effect Domains

The compiler plugin for effect checking is not only a tool provided to Scala programmers, but

also an extensible framework which facilitates the implementation of new effect domains. In

order to define a new effect domain, the framework has to be provided with a representation

of the effect lattice, the corresponding source code annotations, method definitions which

translate between the two effect representations and, if applicable, effect inference rules for

specific language features or predefined methods. Effect domain definitions are lightweight:

for example, the entire implementation of the exceptions domain is in one single source file of

roughly 200 lines of code.

In the current design of the compiler plugin, the source code for each effect domain is part

of the source code of the plugin. In order to add a new domain to the system, the compiler

plugin has to be extended and recompiled. Even though it is possible to activate domains

individually using command line arguments, enabling effect domains to be implemented

outside the compiler plugin would make the system more flexible. We plan to address this

restriction in our future work.

5.3.1 Effect Lattice

Effect lattices are defined as implementations of traitEffectLatticewhich declares an abstract

type Effect, the top and bottom elements, methods to compute joins and meets, and a method

lte to compare effects.

In the case of exceptions presented in Figure 5.5, effects are represented as a list of exception

types that might be thrown, wrapped in an object of type Throws for convenience. The fact

that the compiler-internal representation of types, global.Type, is path-dependent makes

the definition slightly more involved. The lattice for exceptions is defined with respect to an

instance of the Scala compiler, represented by the abstract field global. When instantiating

111

Chapter 5. Effect Checking in Scala

abstract class ExceptionsLattice extends EffectLattice {
val global: Global

case class Throws(tps: List[global.Type] = Nil) { ... }
type Effect = Throws

lazy val top: Effect = Throws(throwableType)

def lte(a: Effect, b: Effect): Boolean = { ... }
def join(a: Effect, b: Effect): Effect = { ... }

def mask(orig: Effect, mask: Effect): Effect = { ... }
}

Figure 5.5: Effect Lattice for Exceptions

the effect lattice in the compiler plugin, the field is defined to be the current compiler, which

makes the typeglobal.Type compatible with type representations that originate in that specific

compiler instance.

In addition to the mandatory lattice operators, the lattice for exceptions defines a method

mask which subtracts the parameter effect mask from orig and is used to compute the effect of

try expressions as explained in the following section.

5.3.2 Domain Definition

Effect domain definitions are implemented as subclasses of the abstract class EffectDomain

which provides functionality shared across domains, like effect inference and effect checking

for methods, or the implementation of relative effects. Each effect domain has to specify

its lattice and conversion methods between elements of the lattice and effect annotations

represented as AnnotationInfo instances in the compiler.

The effect domain for exceptions is presented in Figure 5.6. Its effect lattice is defined in line

2 as an instance of ExceptionsLattice with a refined type for the field global. This singleton

type ensures that the Global instances in the effect lattice and in the EffectDomain are the

same object, which makes the path-dependent type global.Type compatible across the two

classes.

To implement custom effect inference rules for specific language elements, effect domain

authors can override the method computeEffectImpl and pattern match on the abstract syntax

tree. The main information stored in the effect context parameter ctx is the relative effect

environment of the current expression and the expected effect which enables reporting effect

mismatches at the precise location in the source file.

112

5.3. Implementing Effect Domains

1 abstract class ExceptionsDomain extends EffectDomain {
2 lazy val lattice = new ExceptionsLattice {
3 val global: ExceptionsDomain.this.global.type =
4 ExceptionsDomain.this.global
5 }
6

7 def parseAnnotationInfos(annots: List[AnnotationInfo],
8 default: => Effect): Effect = { ... }
9 def toAnnotation(eff: Effect): List[AnnotationInfo] = { ... }

10

11 override def computeEffectImpl(tree: Tree, ctx: EffContext) = tree match {
12 case Throw(expr) =>
13 val exprEff = super.computeEffect(expr, ctx)
14 exprEff u Throws(expr.tpe)
15

16 case Try(body, catches, finalizer) =>
17 val (mask, maskIsPrecise, catchEff) = typesMatchingCases(catches, ctx)
18 val expMasked = if (maskIsPrecise) ctx.expected.map(_ u mask)
19 else None
20 val bodyEff = super.computeEffect(body, ctx.copy(expected = expMasked))
21 val bodyEffMasked = lattice.mask(bodyEff, mask)
22 val finEff = super.computeEffect(finalizer, ctx)
23 bodyEffMasked u catchEff u finEff
24

25 case _ =>
26 super.computeEffectImpl(tree, ctx)
27 }
28 }

Figure 5.6: Effect Domain for Exceptions

In the domain of exceptions, custom inference rules are required for throw and try expressions.

The effect of an expression “throw expr” consist of the effect of evaluating expr, computed

usingsuper.computeEffect in line 13, and the exception type of expressionexpr. The operation

“e1 u e2” is an alias for lattice.join(e1, e2).

To compute the effect of a try expression in line 17, the effect handlers are analyzed using

the helper method typesMatchingCases which returns the handled exception types, a boolean

indicating if the computed mask is precise and the effect of the handler expressions. As

explained in Section 5.1.1, the effect mask of an exception handler cannot always be computed

precisely in Scala.

To compute the effect of the body of the try expression, the expected effect is adjusted

to allow those exceptions which are caught by a handler. For example, in the expression

“try expr catch {case _: E =>}”, exceptions of type E are allowed to be thrown in expression

expr, so E is added to the expected effect.

113

Chapter 5. Effect Checking in Scala

After computing the effect of the try body, the effect mask is applied to obtain the uncaught

exceptions that might occur in the body. The overall effect of the try expression is the join of

the masked body effect, the effect of the handlers and the effect of the finalizer.

5.4 Internals of the Compiler Plugin

The implementation of the effect system for Scala is built on top of the plugin infrastructure

provided by the Scala compiler, which enables deep integration into the type checking process.

This section explains the internals of the compiler plugin and discusses the principal aspects

of its design. The alternative of implementing effect checking as a separate compilation phase

after type checking is discussed in Section 5.4.5.

5.4.1 Compiler Plugins for Scala

Compiler plugins for Scala are created by writing an implementation of the abstract class

Plugin defined in the compiler API. The compiled code of the plugin is packed into a JAR

archive together with an XML file which describes the entry point into the plugin. This JAR file

is passed as a command-line argument to the Scala compiler which loads and instantiates the

classes using reflection.

There are three possibilities for a compiler plugin to extend the Scala compiler:

1. Compiler plugins can register new phases which can be inserted at any stage of the com-

pilation pipeline. Each compiler phase can define tree traversals or tree transformations,

and it can register a type transformation which is automatically applied to the type of

each symbol. The compiler plugin for effect checking does not define new compilation

phases and is implemented using the other two extension mechanisms provided by the

compiler.

2. Extensions to the Scala type system that make use of type annotations can be imple-

mented in a compiler plugin by registering a so-called annotation checker. Annotation

checkers are invoked by the Scala compiler on type operations such as subtype tests or

least upper bound calculations whenever one of the involved types has some annota-

tions. For example, to implement a type system extension which tracks integer signs, an

annotation checker can define the subtype relation between positive integers “Int @pos”

and integers of unknown sign Int, which prevents negative integers to be passed to

methods that only accept positive numbers.

3. To implement a type system extension, adding an annotation checker alone is typically

not sufficient. For example a the type system for tracking integer signs, type inference for

integer literals needs to be adjusted to assign an annotated type based on the value: the

114

5.4. Internals of the Compiler Plugin

literal 7 should have type “Int @pos” instead of only Int. Extensions to various aspects

of the type checking process can be written in compiler plugins by registering so called

analyzer plugins, which are invoked by the compiler when a type is assigned to a symbol

or when a tree is type checked.

In order to be able to explain the annotation checker and the analyzer plugin for effect checking

in more detail, the following section gives an overview on the type checking process in the

Scala compiler.

5.4.2 Naming and Typing in the Scala Compiler

Even though the “typer” phase in the Scala compiler is scheduled to execute after the “namer”

phase, the two components are actually inter-dependent and invoke each other recursively.

On a high level, the typer phase is a tree transformation which takes as input an untyped tree

and produces a typed tree. Before type checking a block of code, for instance a method body or

a class template, the typer invokes the namer which creates symbols for all definitions nested

directly in that block, assigns types to those new symbols and enters them into the current

scope.

The current scope of the type checker is stored as a context object shared between typer and

namer. By entering the symbols into the scope, the namer makes symbols available to the

type checker. The namer does not descend into nested definitions: after creating and entering

the symbols for the current scope it returns to the typer, which will invoke the namer again

when type checking the nested definitions.

Note that the abstract syntax trees passed to the namer are not typed: source-level types are

typically represented as identifiers or selections. For example in a method with a parameter

“x: Int”, the type Int is represented as a tree of the form Ident("Int"). In order to obtain the

symbolic representation of that type, the tree is passed to the type checker which resolves

the name "Int", creates a Type instance representing the type scala.Int and assigns that type

instance to the tpe field of the resulting tree.

The type assigned to a freshly created symbol by the namer is always a lazy type, i.e., a type

that computes itself the first time it is accessed. The way the actual type is computed upon

completion depends on the kind of definition that the symbol represents, but it always invokes

methods of the typer and type checks certain trees.

For instance, a method type consists of parameter symbols and a return type. The types of the

parameter symbols are available as type trees in the abstract syntax tree of the method, so their

types are obtained by invoking “typer.typedType(paramTypeTree).tpe”. If the method defini-

tion has an explicit return type, the same procedure is applied to obtain the result type of the

method. For method definitions where the return type is inferred, computing the type of the

method symbol triggers a full type check of the method body using typer.computeType(body),

115

Chapter 5. Effect Checking in Scala

and the result type is extracted from the resulting tree.

Due to lazy completion of the types assigned to symbols, the type checking phase is not a

sequential transformation of the abstract syntax tree. For example, type checking a method

selection a.m triggers completion of the type of symbol a. If the definition of a has an inferred

result type, computing its type requires type checking the body of its definition, which might

again lead to type checking other parts of the program in the same manner.

In order to enable compiler plugins to interact with the type checking process outlined above,

the Scala compiler invokes registered analyzer plugins before or after the execution of im-

portant operations and allows them to modify the involved trees, types or symbols. More

concretely, analyzer plugins can be used to modify the expected type before type checking a

tree, to modify the type inferred by the type checker for a tree, or to change the type assigned

to a symbol upon completion. The following section explains how the compiler plugin for

effect checking uses those hooks in its implementation.

5.4.3 Implementation of the Effects Plugin

In this section, we disscuss in detail the annotation checker and the analyzer plugin that our

compiler plugin registers in the Scala compiler.

The Annotation Checker

The annotation checker refines the subtyping relation in the presence of effect annotations.

For example, the type of a pure function conforms to the type of a function with an @io effect,

but not vice versa:

val f: (() => Int) { def apply(): Int @pure } = () => { println("f"); 7 }

The subtype test in this example compares the type of method apply in the refinement with

the apply method of the function literal. The comparison of the result types “Int @pure” and

“Int @io” invokes the annotation checker which rejects the subtype test.

Annotation checkers also allow compiler plugins to refine the least upper bound (lub) and

the greatest lower bound (glb) of a list of types. Least upper bounds are used amongst others

to compute the type of an if expression: its type is the lub of the types of the two branches.

The annotation checker for effects defines the least upper bound of two effects as their join.

Therefore, the type of an if expression that returns either a pure function or a function

performing IO is a function type with the IO effect.

The Scala compiler uses subtype tests, and therefore annotation checkers, not only for check-

ing conformance of assignments or method arguments to an expected type, but also for

116

5.4. Internals of the Compiler Plugin

override checking and for type inference. As explained in Section 5.1.5, override checking

ensures that the result type of an overriding method is more specific than the result type of

the method in the superclass. Since override checks use normal subtype tests, the annotation

checker for effects ensures that an overriding method cannot have a larger effect than the

method in the superclass.

When inferring the type of an anonymous class instantiation, the type checker uses subtype

tests to decide whether or not to keep detailed type information for the definitions. The

following example shows a Scala REPL session which illustrates refinement type inference:

scala> new Function0[String] { def apply() = "" }

res0: () => String = <function0>

scala> new Function0[Object] { def apply() = "" }

res1: () => Object{def apply(): String} = <function0>

In the first expression the method apply in the anonymous class body has the same type as

the apply method in the parent type Function0[String], therefore no information is lost by

assigning the expression the parent type. In the second expression, the apply method in the

anonymous class specializes the return type of the method in the parent type from Object to

String. Therefore, the method type is kept in the form of a refinement.

The same mechanism is used for refinement type inference in case the anonymous class

defines a more precise effect for one of its members than in the parent type. This is shown in

the following example:

1 scala> abstract class C { def m: Int }
2 defined class C
3

4 scala> def test(c: C { def m: Int @pure }): Int @pure = c.m
5 test: (c: C{def m: Int @pure})Int @pure
6

7 scala> test(new C { def m = 1 })
8 res5: Int = 1
9

10 scala> test(new C { def m = {println("m"); 1} })
11 <console>:13: error: type mismatch;
12 found : C
13 required: C{def m: Int @pure}
14 test(new C { def m = {println("m"); 1} })
15 ^

The first invocation of test in line 7 type checks because the compiler infers a refined type for

the anonymous class which specifies method m to be pure. In line 10 on the other hand, method

m is impure like in the parent type C, therefore the inferred type is C without a refinement,

which does not conform to the parameter type of method test.

117

Chapter 5. Effect Checking in Scala

In Scala, a function literal such as “(x: Int) => x + 1” is in principle equivalent to an anony-

mous class instantiation “new Function1[Int, Int]{def apply(x: Int) = x + 1}”. However

function literals are more concise and, depending on the expected type, allow parameter and

return types to be omitted. For this reason, function literals are handled separately by the

Scala compiler and the procedure of refinement type inference described in this section is

not applied. To ensure that the type assigned to a function literal also precisely describes the

function’s effect, the compiler plugin for effects refines type inference for function literals

using the analyzer plugin described in the following section.

The Analyzer Plugin

The analyzer plugin is used for multiple tasks in the process of effect checking: it infers effects

for methods with an inferred result type, it checks effects for all other methods, it assigns

refined types to function trees and it prevents effect annotations from flowing to undesired

places and causing spurious errors.

As explained in Section 5.1.1, the effects of a method are inferred whenever the result type of

the method is inferred. The method pluginsTypeSig of the analyzer plugin is invoked after the

lazy type of a symbol is completed, but before the type is assigned to the symbol. For methods

with an inferred result type, this method infers the effect of the method body and attaches the

corresponding effect annotations to the result type computed by the compiler.

Effect verification for methods with an explicit result type is performed during type checking

using the method pluginsTyped of the analyzer plugin, invoked after type checking each

subtree of the program. After type checking a method definition tree with an explicit return

type, the effects plugin computes the effect of the method body and issues an effect typing

error if it does not conform to the effect allowed by the type signature.

One problem when implementing an effect system using type annotations is that effects and

types do not propagate in the same manner. In a block of code or a in sequence of selections,

the type is defined by the last expression, but the effects depend on all of the expressions in

the code. This is illustrated by the following example:

class C { def m(): Int @pure = 1 }
def makeC: C @io = { println("In Factory"); new C }
def test = makeC.m()

Before the analyzer plugin is invoked, the Scala type checker infers the type of method test

to be “Int @pure”, which is simply the return type of method m. This is however not a valid

type for method test. The effect annotation is unsound because the invocation of makeC has

an @io effect and is not pure. As explained above, the analyzer plugin does infer the correct

effect and assign it to the symbol of method test, however the plugin additionally prevents

effect annotations from propagating incorrectly in the first place. This is achieved by the

118

5.4. Internals of the Compiler Plugin

analyzer plugin in method pluginsTyped which is invoked after type checking each subtree of

the program: after type checking a term tree, all effect annotations on the type inferred by the

compiler are removed.

The problem of incorrect propagation of effect annotations also exists for the expected type

used for type checking by the Scala compiler:

def n: Int @pure = 7

When type checking the body of method n, using the annotated result type “Int @pure” as

expected type leads to a spurious type mismatch error because the type of the number literal,

Int, does not conform to the expected type. To fix this issue, the effects plugin eliminates all

effect annotations from the expected type before type checking a term. This is implemented

in method pluginsPt, which allows analyzer plugins to adjust the expected type.

Finally, the analyzer plugin is also responsible for effect inference for function literals. After

type checking a function literal, the method pluginsTyped computes the effect of the function

body and assigns it to the function type inferred by the compiler in the form of a refinement:

scala> val f = () => 7
f: () => Int{def apply(): Int @noIo} = <function0>

scala> val g = () => { println("g"); 7 }
g: () => Int{def apply(): Int @io} = <function0>

In this REPL session where only the IO domain is enabled, the effects of both function literals

f and g are inferred and represented in the type using a refinement.

5.4.4 Propagation of Type Annotations in the Scala Compiler

The previous section shows that the annotation checker is not only used to infer and verify

effects of functions and methods, but it also eliminates effect annotations from terms and

expected types in order to prevent them from propagating incorrectly. This raises the question

if the propagation rules for type annotations in the Scala compiler could be adjusted to

accommodate the needs of the the compiler plugin for effect checking.

According to the Scala language specification [Odersky, 2013], there are no special rules for

propagation of annotated types, they are treated the same as any other type. In particular, this

implies that annotated types are conserved by the type projection operation called “type T in

class C seen from some prefix type S” described in Chapter 3.4 of the specification.

The notion of a type “seen from” a prefix is most prominently used to obtain the correct type of

a member selection in the context of subclassing as illustrated in the following REPL session:

scala> class C[T] { def f(x: T): T = x }

119

Chapter 5. Effect Checking in Scala

scala> object O extends C[Int]

scala> O.f(1)
res0: Int = 1

scala> O.f("s")
<console>:12: error: type mismatch;
found : String("s")
required: Int

O.f("s")
^

To compute the type of method O.f, the compiler first obtains the parent class of the prefix

type O.type which defines method f, i.e., class C in this example. When accessed through

object O, the type of method f is defined by replacing references to the type variable T within

the declared method type (x:T)T by “T in class C seen from the prefix type O.type”. Since T

is the first type parameter of class C, and the prefix type O.type has parent type C[Int], the

compiler substitutes Int for the type parameter T and computes the method type (x:Int)Int

for method O.f, which explains the types displayed in the above example.

Because annotated types are not different from other types according to the language spec-

ification, we would expect that the example is analogous when attaching an annotation to

the return type in the declaration of method f. However, the implementation in the Scala

compiler does not fulfill that expectation and eliminates the annotation when computing the

type projection:

scala> class ann extends annotation.Annotation
scala> class C[T] { def f(x: T): T @ann = x }
scala> object O extends C[Int]

scala> O.f(1)
res1: Int = 1

The return type of method f seen from the prefix type O.type is just Int instead of “Int @ann”,

the type annotation is not propagated through the selection. Note that the annotation is not

eliminated in cases where type propagation does not require computing a projection:

scala> { val x: Int @ann = 1; val y = x; y }
res2: Int @ann = 1

In this example the inferred type for the local value y is simply the type of x, which is “Int @ann”.

These examples show that the current implementation of the type system in the Scala compiler

does not exactly follow the language specification6. Internally, the compiler represents types

as immutable data types. Type transformations are implemented as subclasses of the abstract

6The observations relate to the current release of the Scala compiler at the time of writing, which is 2.10.2

120

5.4. Internals of the Compiler Plugin

TypeMap transformation which maps a type to a new type by applying a given transformation

function to each element of the original type. By default, type transformations preserve type

annotations, but the type transformation that implements the “seen from” projection drops

type annotations deliberately.

There is a special case in the “seen from” transformation which does conserve type annotations,

namely, if the annotation class is a subtype of the trait TypeConstraint defined in the Scala

standard library. The following example illustrates that behavior:

scala> import annotation.{Annotation, TypeConstraint}
scala> class constraintAnn extends Annotation with TypeConstraint
scala> class C[T] { def f(x: T): T @constraintAnn = x }
scala> object O extends C[Int]

scala> O.f(1)
res0: Int @constraintAnn = 1

The “seen from” transformation conserves the @constraintAnn annotation in the result type of

method O.f when replacing the type parameter T by Int.

Effects Are Type Constraints

Section 5.4.3 shows that the Scala type checker propagates effect annotations like ordinary

types, which is unsound with respect to the semantics of an effect system. The compiler

plugin for effect checking eliminates the annotations inserted by the type checker later on and

computes the correct effects for methods and functions.

The reason why effect annotations are propagated through type projections is that their

definitions extend the TypeConstraint trait, whose functionality is explained above. One

might think that a more systematic way to prevent unsound propagation of effect annotations

would be to define effect annotations as ordinary annotations instead of type constraints.

This would lead to two different problems that we explain below, from which the second one

cannot be solved in a straightforward manner.

The first problem is that ordinary type annotations are still propagated incorrectly in some

cases, even though type inference does not require computing a projection. In the follow-

ing example the compiler plugin for effects is not enabled. It shows how annotations are

propagated by the type checker:

scala> class pure extends annotation.Annotation

scala> {
| def f: Int @pure = 1
| def g = { println("running g"); f }
| g

121

Chapter 5. Effect Checking in Scala

| }
running g
res0: Int @pure = 1

The Scala compiler infers the result type “Int @pure” for method g, which is not sound ac-

cording to the semantics of the effect system and would need to be corrected by the compiler

plugin. This shows that defining effect annotations as ordinary annotations instead of type

constraints does not prevent unsound propagation of effect annotations in all cases.

The second problem is related to the fact that effect annotations are not only used for verifying

the effects of methods, but they affect subtyping as explained in Section 5.1.5. In order to

enable the effect system to compute the subtype relation correctly, it is essential that effect

annotations are not eliminated during the computation of a type projection.

In the following example, the definition of the annotation class @pure does not extend the

trait TypeConstraint. The “seen from” transformation eliminates the effect annotation when

computing the type of the field selection O.a and the type of the local value x does not specify

the effect of method m:

scala> class pure extends annotation.Annotation
scala> trait A { def m: Int }
scala> object O {

| val a: A { def m: Int @pure } = new A { def m = 1 }
| }

scala> val x = O.a
x: A{def m: Int} = anon1@22f4bf02

This example shows the propagation of annotations without any compiler plugins enabled.

The type annotation is eliminated early by the type checker and a compiler plugin cannot influ-

ence this process. In the case of the compiler plugin for effect checking, this would lead to spu-

rious type mismatch errors: assume a method f takes a parameter of type A{def m: Int @pure}.

The invocation f(x) would be rejected by the effect system because method f requires an

instance of A with a pure method m, while the type of x permits method m to have arbitrary

effects.

For this reason, all effect annotation classes defined in the effect system’s implementation

extend the trait TypeConstraint, which ensures that effect annotations are not eliminated by

the type checker:

scala> import annotation.{Annotation, TypeConstraint}

scala> class pure extends Annotation with TypeConstraint

scala> trait A { def m: Int }
scala> object O {

| val a: A { def m: Int @pure } = new A { def m = 1 }
| }

122

5.4. Internals of the Compiler Plugin

scala> val x = O.a

x: A{def m: Int @pure } = anon1@45485026

There are a few issues in the implementation of the effect system related to the fact that effect

annotations propagate incorrectly in the type checker. For example, when the compiler plugin

for effects is disabled, propagated effect annotations are never eliminated even though in

some cases the resulting annotations are not correct, as explained earlier in this section.

In the future, we plan to specify precisely the propagation of type annotations in the type

system and to allow compiler plugins to customize this process.

5.4.5 Implementing Effect Checking as a Separate Compilation Phase

The previous section discusses a number of difficulties in the implementation of the compiler

plugin for effect checking. The problems are caused by the interaction between the ordinary

type checking process in the Scala compiler and the requirements for effect checking. Given

these issues, would it be possible and simpler to implement effect checking as a separate

phase in the compilation process, instead of extending the type checking process? In one of

our prototypes we tried to implement effect checking as a separate compilation phase. Based

on the problems encountered while writing this prototype, we answer the above question

negatively.

First, it is essential to integrate the effect checking process into subtype checking of the Scala

type system. Subtyping ensures that functions with side effects are rejected in places where

a pure function is expected. Because such a subtype test can appear in any assignment or

method invocation, an effect checker that does not integrate with the ordinary subtyping

process would need check each of these cases manually. Furthermore, subtyping is not only

used for comparing types but also for inferring type refinements, as explained in Section 5.4.3.

This implies that the compiler plugin requires an annotation checker either way.

A second issue is that effect checking is only possible if effect annotations in refinements are

propagated through type projections, as explained in Section 5.4.4. Thus, effect annotation

classes need to extend the trait TypeConstraint as explained in Section 5.4.4, even if effect

checking happens in a later compilation phase. The compiler plugin also needs to handle the

incorrect propagation of effect annotations.

Finally, a major issue we encountered is that that some parts of the program need to be type

checked a second time in order to correctly compute effects. We illustrate this by the following

example:

def m: Int @pure = {
val f = (x: Int) => x + 1
f.apply(x)

123

Chapter 5. Effect Checking in Scala

}

During type checking, the Scala compiler assigns type “Int => Int” to the value f and the

selection f.apply is resolved to the method apply defined in trait Function1, whose signature

permits arbitrary side effects. When computing the side effects of method m, the effect checking

process assigns a more precise type to the function literal, namely the refined function type

“(Int => Int){def apply(x: Int): Int @pure}”. The difficulty is that the selection f.apply

has to be type checked again so that it resolves to the pure method apply defined in the

refinement type. The process of eliminating types and symbols from syntax trees and type

checking them again is brittle and difficult to achieve with the current implementation of the

Scala compiler. By integrating effect checking into the type checking process, all selections are

resolved correctly in the first place.

5.5 Future Work

In this section, we discuss practical issues that we plan to work on in the future in order to

make the effect system easier to use in both existing and new projects.

5.5.1 Effect Annotations for Existing Libraries

The most important problem not yet solved in our effect system for Scala is the interaction

of effect-annotated code with existing libraries that are lacking effect information. To ensure

soundness, the effect system assumes that methods without effect annotations might have

arbitrary effects.

In our system, the only tool which allows programmers to specify the effect of a method

defined in an external library is to introduce an effect cast at each call site, for instance:

def log(msg: String): Unit @io = {
java.lang.System.out.println(msg): @unchecked @io

}

Because this approach is error-prone and leads to boilerplate code, it is not a solution that

should be recommended to the users of the effect system.

We currently focus on two solutions for this. The first one is used in the Checker Framework by

Dietl et al. [2011], a framework for implementing type system extensions for Java. To solve the

same problem of interfacing existing libraries, they provide annotations for existing libraries

in the form of “stub” files which contain annotated member declarations for existing classes.

Stub files are ordinary source files, but without any implementations. They can be generated

from binary libraries so that programmers only have to fill in the necessary effect annotations.

124

5.5. Future Work

In addition to supporting stub files, the Checker Framework also defines a file format for

external storage of annotations and provides a bytecode rewriting tool which can extract or

insert external annotations from or into a binary library.

A second solution would be to provide effect specifications for existing libraries in the form of

a program that uses the Scala reflection API. Specifically, the effect checking framework would

allow users to register descriptor functions of type “Symbol => Option[Effect]” which take as

argument a symbol representing the invoked method and optionally return the pre-defined

effect of the corresponding method. These descriptor functions have the advantage of being

potentially more concise than stub files. For example the function

sym => if (sym.owner == StringClass) Some(pure)
else None

would define the default effect for all methods of class String to be @pure.

5.5.2 Effect Inference for Existing Libraries

To streamline or automate the process of declaring effect annotations for existing libraries we

plan to work on an inter-procedural, whole-program effect inference tool. Ideally, such a tool

would be able to compute effect summaries for methods in existing code and save them either

as stub files or write them directly into the original source code.

The purity system JPure by Pearce [2011] consists not only of a type system for verifying purity

but also of an inference algorithm for existing code. Effect inference was successfully applied

to the Java standard library and overall, 40% of the analyzed methods could be inferred as

pure.

In the case of Scala, global effect inference is more involved due to the prevalence of effect-

polymorphism and higher-order functions. The work by Kneuss et al. [2013] on effect analysis

for programs with callbacks uses heuristics to automatically infer effect-polymorphism: for ex-

ample, for higher-order methods like map from the collections library, there is a large number of

call sites with argument functions of varying types and effects. In such cases the inference algo-

rithm delays the effect of the parameter function and treats the method as effect-polymorphic.

Their inference algorithm has been implemented for Scala and we expect to be able to trans-

form the results of its effect analysis into effect annotations which are compatible with our

framework.

5.5.3 External Effect Domain Definitions

Section 5.3 shows that new effect domains can be added to the compiler plugin by adding

source files containing the effect annotation classes and the effect domain definition, and

125

Chapter 5. Effect Checking in Scala

re-compiling the plugin with the additional domain. While the API for implementing effect

domains is lightweight, requiring effect domain authors to compile and distribute custom

builds of the compiler plugin is an overhead and forces the users of the effect system to choose

among the available versions of the plugin.

In the future, we will work on allowing effect domains to be implemented and compiled

outside the compiler plugin and enable the users of the effect system to include effect domains

modularly.

5.6 Conclusion

The type-and-effect systems presented in this dissertation have been implemented in the form

of a compiler plugin for Scala. Specifically, the implementation is a generic framework for

effect checking based on the effect system in Chapter 2, it supports relative effect annotations

as described in Chapter 3 and it includes the type system for purity from Chapter 4. The

compiler plugin provides effect domain implementations for verifying IO effects, checked

exceptions and purity. The system is designed as an extensible framework: adding new effect

domains is straightforward and requires a small amount of code. The implementation did not

require any changes to the Scala language and the compiler plugin works with the current

release of the Scala compiler.

We applied the effect system to the core of the Scala collections library which mixes higher-

order code and locally scoped side effects in various ways. We observed that effect annotations

are typically required on interface definitions, but can be inferred in implementation classes.

The required effect annotations are lightweight and easy to write and understand.

We explained the process of naming and type checking in the Scala compiler and showed how

the compiler plugin for effect checking integrates into that process. We showed that the main

difficulties are due to the fact that side effects propagate differently than types. For example,

the effects of a block of code depend on the entire block, while the type only depends on the

last expression.

126

Chapter 6

Conclusion

In this dissertation, we designed a practical type-and-effect system for Scala that uses intuitive

and lightweight effect annotations to verify multiple kinds of side effects simultaneously.

For each of the components of our system, we aimed to find a pragmatic balance between

notational and conceptual overhead, simplicity and expressive power. We believe that such

a compromise is crucial for the wide-spread adoption of effect systems and that the ideas

presented in this thesis are a significant step towards that goal.

In recent years, there is a clear trend in mainstream programming languages towards the

integration of object-oriented and functional programming. While Scala is a pioneer in this

domain, other languages such as C# 3.0, C++ 11 and Java 8 followed by adding support for

lambda expressions. The availability of lambda expressions naturally leads to higher-order

functions, in which the side effects of a function usually depend on the effects of its argument.

Therefore, support for effect-polymorphic functions is essential for the expressiveness of an

effect system.

The traditional method to express effect-polymorphism is by using effect type parametrization,

e.g., the effect system for checked exceptions in Java. In Chapters 2 and 3, we identified several

issues related to the expressiveness and verbosity of checked exceptions in Java and we showed

that a lightweight syntax for expressing effect-polymorphism is crucial to solve these issues.

The verbosity of effect-polymorphism in Java leads to practical limitations. In Java 8, the

interface Iterabledefines a method forEach that applies its parameter function to all elements

of a collection. To simplify the type signature, method forEach is not effect-polymorphic and

only accepts argument functions that do not throw any exceptions [Oracle, 2013b].

A type-and-effect system is the most useful if it can verify multiple kinds of side effects. For

example, dead code elimination can be applied only if an expression does not perform IO,

does not modify any state and cannot throw an exception. In Chapter 2, we introduced a

generic type-and-effect system where multiple effect domains can be integrated modularly.

By embedding a lightweight syntax to express effect-polymorphic functions, we showed that

127

Chapter 6. Conclusion

effect-polymorphism can be expressed independently of any specific effect domains. We

proved that the effects computed by the generic system are sound. When adding one or

multiple effect domains, showing soundness only requires to prove two lemmas for each effect

domain, but it does not require a new inductive proof.

In object-oriented languages, every object carries a potentially large number of member func-

tions. A method that takes an object as argument can be seen as taking a large number of

functions as argument, just like a higher-order function. In Chapter 3, we introduced relative

effect annotations, an intuitive and lightweight annotation scheme for effect-polymorphism

that is compatible with both object-oriented and functional languages. We studied the prop-

erties and limitations of relative effect annotations using a lambda calculus with dependent

types. Using the implementation of relative effect annotations for Scala, we showed that they

can express common patterns involving higher-order code such as those found in the Scala

collections library.

In Chapter 4 we presented a type-and-effect system for verifying purity of methods which do

not modify program state that existed before their execution. State modification is one of the

most widely used side effects, but it is difficult to track because of aliasing. The purity system

identifies state that is freshly allocated within a method and masks modification effects on

that fresh state. The system does not make an attempt at tracking or controlling aliasing in

a program globally. This restriction allows building an effect system with effect annotations

that are easy to understand and lightweight enough for programmers to use. We implemented

the effect system for purity as an effect domain of the generic framework for effect checking

in Scala and showed that it can express purity of common patterns, e.g., using an iterator or

copying a collection using a mutable builder.

In Chapter 5 we discussed the implementation of the effect system for Scala, which is in the

form of a compiler plugin. Our implementation includes the effect domains for IO, exceptions

and state modification effects. Because implementing new effect domains is straightforward

and requires a small amount of code, the framework can be used to verify various properties

that can be modeled as effects. For example, effects can track blocking operations in Scala’s

futures library (cf. Section 2.6.2) or in an UI library [Gordon et al., 2013]. We applied the effect

system to a core of the Scala collections library and observed that the annotation overhead is

manageable and that the required effect annotations are easy to write and understand. We also

discussed the implementation details of the compiler plugin and explained how it integrates

into the type checking process of the Scala compiler.

Overall, we believe the work in this thesis shows that a carefully designed effect system is

practical and beneficial and can be incorporated into mainstream programming.

128

Appendix A

Soundness Proof for LPE

This chapter presents the proofs for the preservation and soundness theorems for LPE that are

stated in Section 2.8.

A.1 Lemmas

This section introduces two additional lemmas used later in the preservation and soundness

proofs.

A.1.1 Canonical Forms

The canonical forms lemma states that if a value has a function type, then it can only be a

function.

Lemma A.1. Canonical forms.

1. If Γ; f ` v : T ! ⊥ and T <: T1
e=⇒ T2, then v = (x : T ′

1) ⇒ t .

2. If Γ; f ` v : T ! ⊥ and T <: T1
e−→ T2, then v = (x : T ′

1) → t .

Proof. In the first case, the type T is a subtype of a monomorphic function type. The sub-

typing rule is only defined within function types of the same kind, therefore T cannot be a

polymorphic function type.

There are only two kinds of values in the language: monomorphic and effect-polymorphic

function abstractions. Since the type of v cannot be a polymorphic function type, this restricts

the value v to be a monomorphic abstraction.

129

Appendix A. Soundness Proof for LPE

The argument for the second case is equivalent.

A.1.2 Value Typing Environment

Lemma A.2 states that the polymorphism context f of a typing environment Γ; f is not relevant

when type checking values, parameters or an error term.

Lemma A.2. Environment for type checking values.

1. If Γ; f ` v : T ! ⊥, then Γ; f ′ ` v : T ! ⊥ for an arbitrary f ′.

2. If Γ; f ` x : T ! ⊥ for a parameter x ∈ Γ, then Γ; f ′ ` x : T ! ⊥ for an arbitrary f ′.

3. If Γ; f ` throw(p) : Nothing ! e, then Γ; f ′ ` throw(p) : Nothing ! e for an arbitrary f ′.

Proof. There are two kinds of values: monomorphic and polymorphic function abstractions.

Both of the corresponding typing rules, T-ABS-MONO and T-ABS-POLY, do not make use of

the effect-polymorphism environment f in any way, changing it therefore does not change

the inferred type T . For parameters and error terms, the conclusion also follows immediately

from the corresponding typing rules.

Monotonicity and Consistency The proofs for the monotonicity and consistency lemmas

(2.1 and 2.2) are given in Chapter 2.

A.1.3 Substitution Lemmas

This section presents the proofs for Lemma 2.3 (Preservation under substitution for monomor-

phic abstractions) and Lemma 2.4 (Preservation under substitution for polymorphic abstrac-

tions).

Proof (Lemma 2.3). The preconditions of the lemma are:

• Γ, x : T1; f ` t : T ! el with f 6= x

• Γ; g ` v : T2 ! ⊥

• T2 <: T1

Proof of Γ; f ` [v/x]t : T ′ ! e ′l with T ′ <: T and e ′l v el by induction on the typing derivations

for term t .

130

A.1. Lemmas

� Case T-PARAM: We have t = z and z : T ∈ Γ, x : T1. There are two sub-cases:

– z = x, then [v/x]z = v and T1 = T . Since we have Γ; g ` v : T2 ! ⊥, by Lemma A.2,

we obtain Γ; f ` v : T2 ! ⊥. The requirements T2 <: T and ⊥v el are immediate.

– z 6= x, then [v/x]z = z. We have Γ, x : T1; f ` z : T ! el . Since we know that x

does not appear freely, x ∉ FV (z), we can remove its binding from the typing

environment and obtain the result.

� Case T-ABS-MONO: We have t = (y : Ta) ⇒ t1. From the typing rule we get T = Ta
e=⇒ Tb

and Γ, x : T1, y : Ta ;ε ` t1 : Tb ! e. We can assume that x 6= y and y ∉ FV (v) by applying

α-renaming if necessary.
Γ, y : Ta , x : T1;ε ` t1 : Tb ! e permutation of the environment (1)

Γ, y : Ta ; g ` v : T2 ! ⊥ precondition, environment extended by y (2)

Γ, y : Ta ;ε ` [v/x]t1 : T ′
b ! e ′ with T ′

b
<: Tb ∧e ′ v e, by 1,2, induction (3)

Since [v/x]t = (y : Ta) ⇒ [v/x]t1 we can apply T-ABS-MONO using (3) and obtain

Γ; f ` [v/x]t : Ta
e ′
=⇒ T ′

b ! ⊥
Verifying Ta

e ′
=⇒ T ′

b
<: T and ⊥v el is straightforward.

� Case T-APP-MONO: t = t1 t2. From the typing rule we have:

Γ, x : T1; f ` t1 : Ta
e=⇒ T ! e1

Γ, x : T1; f ` t2 : Tb ! e2

Tb <: Ta and el = eff (APP,e1,e2,e)
We apply the induction hypothesis to the subterms t1 and t2 to obtain

Γ; f ` [v/x]t1 : Tc ! e ′1 with Tc <: Ta
e=⇒ T and e ′1 v e1 (1)

Γ; f ` [v/x]t2 : Td ! e ′2 with Td <: Tb and e ′2 v e2 (2)

There are two subtyping rules that match Tc <: Ta
e=⇒ T :

– case S-NOTHING, then Tc = Nothing. By applying T-APP-E with (1) and (2) we ob-

tain Γ; f ` [v/x]t : Nothing ! e ′l where e ′l = eff (APP,e ′1,e ′2,⊥). We have Nothing <: T

by S-NOTHING.

– case S-FUN-MONO, Tc = T ′
a

e ′
=⇒ T ′. By S-TRANS we obtain Td <: T ′

a . Applying

T-APP-MONO yields Γ; f ` [v/x]t : T ′ ! e ′l where e ′l = eff (APP,e ′1,e ′2,e ′). The result

T ′ <: T is immediate.

In both cases we have eff (APP,e ′1,e ′2,e ′) v eff (APP,e1,e2,e) for the resulting effect by

monotonicity of eff .

� Case T-ABS-POLY: similar to the case T-ABS-MONO.

� Case T-APP-PARAM: t = f t2. From the typing rule we have

f : Ta
e=⇒ T ∈ Γ, x : T1, and f : Ta

e=⇒ T ∈ Γ since f 6= x

Γ, x : T1; f ` t2 : Tb ! e2, and Tb <: Ta

el = eff (APP,⊥,e2,⊥)
By induction hypothesis Γ; f ` [v/x]t2 : T ′

b ! e ′2 with T ′
b

<: Tb , e ′2 v e2. Since f 6= x we

131

Appendix A. Soundness Proof for LPE

have [v/x] f = f . Therefore applying T-APP-PARAM yields

Γ; f ` [v/x]t : T ! e ′l with e ′l = eff (APP,⊥,e ′2,⊥)

By monotonicity of eff we obtain e ′l v el .

� Case T-APP-POLY: similar to the case T-APP-MONO. An additional lemma is required: if

T ′ <: T then latent(T ′) v latent(T). The proof is straightforward.

� Case T-APP-E: similar to T-APP-MONO. Note that T <: Nothing implies T = Nothing,

which is used in the proof.

� Case T-THROW: straightforward.

� Case T-TRY: t = try t1 catch(p) t2. From the typing rule we have:
Γ, x : T1; f ` t1 : Ta ! e1 and Ta <: T

Γ, x : T1; f ` t2 : Tb ! e1 and Tb <: T

el = eff (CATCH(p),eff (TRY,e1),e2)
By applying the induction hypothesis on t1 and t2 we obtain:

Γ; f ` [v/x]t1 : T ′
a ! e ′1 with T ′

a <: Ta and e ′1 v e1

Γ; f ` [v/x]t2 : T ′
b ! e ′2 with T ′

b
<: Tb and e ′2 v e2

Applying T-TRY we get:

Γ; f ` [v/x]t : T ! e ′l with e ′l = eff (CATCH(p),eff (TRY,e ′1),e ′2)

By monotonicity of eff we obtain e ′l v el .

Proof (Lemma 2.4). The preconditions of the lemma are:

• Γ, x : T1; x ` t : T ! el

• Γ; g ` v : T2 ! ⊥

• T2 <: T1

Proof of Γ;ε ` [v/x]t : T ′ ! e ′l with T ′ <: T and e ′l v el t latent(T2) by induction on the typing

derivations for term t .

� Case T-PARAM: Similar to case T-PARAM in the proof of Lemma 2.3.

� Case T-ABS-MONO: t = (y : Ta) ⇒ t1. From the typing rule we get:
Γ, x : T1, y : Ta ;ε ` t1 : Tb ! e

T = Ta
e=⇒ Tb

We can assume that x 6= y and y ∉ FV (v).

132

A.1. Lemmas

Γ, y : Ta , x : T1;ε ` t1 : Tb ! e permutation of the environment

Γ, y : Ta ; g ` v : T2 ! ⊥ precondition, y added to environment

Γ, y : Ta ;ε ` [v/x]t1 : T ′
b ! e ′ with T ′

b
<: Tb ∧e ′ v e, by Lemma 2.3

Γ;ε ` [v/x]t : Ta
e ′
=⇒ T ′

b ! ⊥ by T-ABS-MONO

Verifying Ta
e ′
=⇒ T ′

b
<: T and ⊥v el is straightforward.

� Case T-APP-MONO: t = t1 t2. From the typing rule we have:

Γ, x : T1; x ` t1 : Ta
e=⇒ T ! e1

Γ, x : T1; x ` t2 : Tb ! e2

Tb <: Ta and el = eff (APP,e1,e2,e)
We apply the induction hypothesis to the subterms t1 and t2 to obtain

Γ;ε ` [v/x]t1 : Tc ! e ′1 with Tc <: Ta
e=⇒ T and e ′1 v e1 t latent(T2) (1)

Γ;ε ` [v/x]t2 : Td ! e ′2 with Td <: Tb and e ′2 v e2 t latent(T2) (2)

There are two subtyping rules that match Tc <: Ta
e=⇒ T :

– case S-NOTHING, then Tc = Nothing. By applying T-APP-E with (1) and (2) we ob-

tain Γ;ε ` [v/x]t : Nothing ! e ′l where e ′l = eff (APP,e ′1,e ′2,⊥). We have Nothing <: T

by S-NOTHING.

– case S-FUN-MONO, then Tc = T ′
a

e ′
=⇒ T ′. By S-TRANS we obtain Td <: T ′

a . Applying

T-APP-MONO yields Γ;ε ` [v/x]t : T ′ ! e ′l where e ′l = eff (APP,e ′1,e ′2,e ′). The result

T ′ <: T is immediate.

We need to verify eff (APP,e ′1,e ′2,e ′) v eff (APP,e1,e2,e)t latent(T2). By (1), (2) and mono-

tonicity of eff we obtain:

eff (APP,e ′1,e ′2,e ′) v eff (APP,e1 t latent(T2),e2 t latent(T2),e)

Using the second property of the monotonicity Lemma 2.1 we conclude:

. . . v eff (APP,e1,e2,e)t latent(T2)

� Case T-ABS-POLY: similar to the case T-ABS-MONO.

� Case T-APP-PARAM: t = x t2. From the typing rule:

x : Ta
e=⇒ T ∈ Γ, x : T1, therefore T1 = Ta

e=⇒ T

Γ, x : T1; x ` t2 : Tb ! e2, and Tb <: Ta

el = eff (APP,⊥,e2,⊥)
By applying the induction hypothesis on t2 we have:

Γ;ε ` [v/x]t2 : T ′
b ! e ′2 with T ′

b
<: Tb ∧e ′2 v e2 t latent(T2) (1)

Γ;ε ` v : T2 ! ⊥ by Lemma A.2 (2)

We have [v/x]t = v [v/x]t2. Since T2 <: T1 ∧T1 = Ta
e=⇒ T , there are two matching sub-

typing rules:

– case S-NOTHING, then T2 = Nothing. Applying T-APP-E with (1) and (2) yields

Γ;ε ` [v/x]t : Nothing ! e ′l where e ′l = eff (APP,⊥,e ′2,⊥). We have Nothing <: T by

S-NOTHING.

133

Appendix A. Soundness Proof for LPE

– case S-FUN-MONO, T2 = T ′
a

e ′
=⇒ T ′. Using S-TRANS we obtain T ′

b
<: T ′

a . Applying

T-APP-MONO yields Γ;ε ` [v/x]t : T ′ ! e ′l where e ′l = eff (APP,⊥,e ′2,e ′). The result

T ′ <: T is immediate.

We need to verify eff (APP,⊥,e ′2,e ′) v eff (APP,⊥,e2,⊥)t latent(T2). Using (1) and the

monotonicity of eff we obtain:

eff (APP,⊥,e ′2,e ′) v eff (APP,⊥,e2 t latent(T2),e ′)
Since e ′ v⊥te ′, monotonicity gives:

. . . v eff (APP,⊥,e2 t latent(T2),⊥te ′)
Using the second property of the monotonicity Lemma 2.1:

. . . v eff (APP,⊥,e2,⊥)te ′t latent(T2)

And finally, since e ′ = latent(T2), we obtain:

. . . v eff (APP,⊥,e2,⊥)t latent(T2).

� Case T-APP-POLY: similar to the case T-APP-MONO.

� Case T-APP-E: similar to T-APP-MONO.

� Case T-THROW: straightforward.

� Case T-TRY: t = try t1 catch(p) t2. By the typing rules:
Γ, x : T1; x ` t1 : Ta ! e1 and Ta <: T

Γ, x : T1; x ` t2 : Tb ! e1 and Tb <: T

el = eff (CATCH(p),eff (TRY,e1),e2)
By applying the induction hypothesis to t1 and t2:

Γ;ε ` [v/x]t1 : T ′
a ! e ′1 with T ′

a <: Ta and e ′1 v e1 t latent(T2)

Γ;ε ` [v/x]t2 : T ′
b ! e ′2 with T ′

b
<: Tb and e ′2 v e2 t latent(T2)

Applying T-TRY, we obtain Γ;ε ` [v/x]t : T ! e ′l with e ′l = eff (CATCH(p),eff (TRY,e ′1),e ′2).

By the monotonicity Lemma 2.1 we obtain e ′l v el .

A.2 Soundness Theorems

A.2.1 Preservation

Proof (Theorem 2.1). The preconditions of the preservation theorem are:

• Γ, f ` t : T ! e

• t ↓ 〈r,S〉

134

A.2. Soundness Theorems

Proof of Γ, f ` r : T ′ ! e ′ with T ′ <: T by induction on the evaluation rules for term t .

� Case E-APP-E1: t = t1 t2. We have

t1 ↓ 〈throw(p),S1〉∧ t ↓ 〈throw(p),S〉 where S = dynEff (S1,;,;)

By typing rule T-THROW, we obtain Γ; f ` r : Nothing ! eff (THROW(p)). The result

Nothing <: T is immediate by S-NOTHING.

� Case E-APP-E2: similar.

� Case E-APP: t = t1 t2. We have:
t1 ↓ 〈(x : T1) 7→ tr ,S1〉
t2 ↓ 〈v2,S2〉
[v2/x]tr ↓ 〈r,Sl 〉

We distinguish the following sub-cases for the various typing rules for application

expressions:

– case T-APP-E. We have Γ; f ` t1 : Nothing ! e1. By applying the induction hypoth-

esis to t1 we obtain Γ; f ` (x : T1) 7→ tr : T ′
1 ! e ′1 such that T ′

1 <: Nothing. Since the

type of a function abstraction cannot be Nothing, this case is impossible.

– case T-APP-PARAM. We have t1 = p for some parameter p. This is impossible, since

we have t1 ↓ 〈(x : T1) 7→ tr ,S1〉, but there is no evaluation rule for parameters.

– case T-APP-MONO. We have
Γ; f ` t1 : Ta

el=⇒ T ! e1

Γ; f ` t2 : Tb ! e2 with Tb <: Ta

Applying the induction hypothesis to t1 and t2:

Γ; f ` (x : T1) 7→ tr ! Tc ! e ′1 with Tc <: Ta
el=⇒ T

Γ; f ` v2 : T ′
b ! ⊥ with T ′

b
<: Tb

According to the subtyping rules, Tc can either be Nothing or a monomorphic

function type. But since Tc is the type of a function abstraction, it cannot be

Nothing, therefore we have Tc = Td

e ′
l=⇒ Te . By the canonical forms Lemma A.1, the

corresponding function abstraction is a monomorphic one. We obtain:

Γ; f ` (x : T1) ⇒ tr ! T1

e ′
l=⇒ Te ! e ′1, with Td = T1

Therefore:

Γ, x : T1;ε ` tr : Te ! e ′l
By transitivity of subtyping, we have T ′

b
<: Tb <: Ta <: T1, and we can apply substi-

tution Lemma 2.3 to obtain:

Γ;ε ` [v2/x]tr : T ′
e ! e ′′l with T ′

e <: Te

Now we apply the induction hypothesis on [v2/x]tr to obtain:

Γ;ε ` r : Tr ! er with Tr <: T ′
e

By Lemma A.2 we getΓ; f ` r : Tr ! er , and by transitivity of subtyping Tr <: T ′
e <: Te <: T .

– case T-APP-POLY. Similar.

135

Appendix A. Soundness Proof for LPE

� Case E-THROW: t = throw(p). By T-THROW, we have

Γ; f ` throw(p) : Nothing ! eff (THROW(p))

The same typing rule is also applied to the result r , and we verify Nothing <: Nothing by

S-REFL.

� Case E-TRY-E: t = try t1 catch(p) t2. We have
t1 ↓ 〈thr ow(p),S1〉
t2 ↓ 〈r2,S2〉

From the typing rule T-TRY:
Γ; f ` t1 : T 1 ! e1 with T1 <: T

Γ; f ` t2 : T 2 ! e2 with T2 <: T
Applying the induction hypothesis to t1, we obtain Γ; f ` r2 : T ′

2 ! e ′2 with T ′
2 <: T2. Since

r = r2, in remains to verify using S-TRANS that T ′
2 <: T2 <: T .

� Case E-TRY: similar.

A.2.2 Effect Soundness

Proof (Theorem 2.2). The preconditions of the soundness theorem are:

• Γ, f ` t : T ! e

• t ↓ 〈r,S〉

Proof of S ¹ e t latent(Γ(f)) by induction on the evaluation rules for term t .

� Case E-APP-E1: t = t1 t2. We have
t1 ↓ 〈throw(p),S1〉
t ↓ 〈throw(p),dynEff (APP,S1,;,;)〉

We look at the sub-cases corresponding to the typing rules for applications:

– case T-APP-E. The typing rule gives Γ; f ` t1 : Nothing ! e1 and Γ; f ` t2 : T2 ! e2

and e = eff (APP,e1,e2,⊥).

By induction hypothesis, we have S1 ¹ e1 t latent(Γ(f)).

Note that trivially, ; ¹ ex for any ex . Therefore we can apply the consistency

Lemma 2.2 to obtain dynEff (APP,S1,;,;) ¹ eff (APP,e1,e2,⊥)t latent(Γ(f)).

– case T-APP-PARAM: t1 = p for some parameter p. This case is not possible because

there is no evaluation rule for parameters.

136

A.2. Soundness Theorems

– case T-APP-MONO:
Γ; f ` t1 : T1

el=⇒ T ! e1

Γ; f ` t2 : T2 ! e2 with T2 <: T1

e = eff (APP,e1,e2,el)
The induction hypothesis on t1 gives

S1 ¹ e1 t latent(Γ(f))

Since ;¹ ex for any ex , we can apply Lemma 2.2 to obtain

dynEff (APP,S1,;,;) ¹ eff (APP,e1,e2,el)t latent(Γ(f))

– case T-APP-POLY: similar.

� Case E-APP-E2: similar

� Case E-APP: Again, t = t1 t2. We have the following preconditions
t1 ↓ 〈(x : Ta) 7→ tr ,S1〉
t2 ↓ 〈v2,S2〉n

[v2/x]tr ↓ 〈r,Sl 〉
t ↓ 〈r,S〉 with S = dynEff (APP,S1,S2,Sl)

There is a sub-case for every possible typing rule for the application expression.

– case T-APP-E: We have Γ; f ` t1 : Nothing ! e1.

By preservation we obtain Γ; f ` (x : Ta) 7→ tr : T1 ! e ′1 with T ′
1 <: Nothing, which

cannot be derived with any typing rule. Therefore, this case is impossible.

– case T-APP-PARAM: t1 = p for some parameter p. This case is not possible because

there is no evaluation rule for parameters.

– case T-APP-MONO:
Γ; f ` t1 : T1

el=⇒ T ! e1

Γ; f ` t2 : T2 ! e2 with T2 <: T1

e = eff (APP,e1,e2,el)
By applying the induction hypothesis on t1 and t2, we obtain:

S1 ¹ e1 t latent(Γ(f))

S2 ¹ e2 t latent(Γ(f))

By preservation we have Γ; f ` (x : Ta) 7→ tr : T ′
1 ! ⊥ with T ′

1 <: T1
el=⇒ T . Since

the term is a function abstraction, T ′
1 = Nothing is not possible, which implies

T ′
1 = Ta

e ′
l=⇒ T ′. By the canonical forms Lemma A.1, the term is a monomorphic

function abstraction:

Γ; f ` (x : Ta) ⇒ tr : Ta

e ′
l=⇒ T ′ ! ⊥

Therefore, we have Γ, x : Ta ;ε ` tr : T ′ ! e ′l . Applying preservation on t2 gives us

Γ; f ` v2 : T ′
2 ! ⊥ with T ′

2 <: T2 <: T1 <: Ta . We can apply substitution Lemma 2.3 to

obtain

Γ;ε ` [v2/x]tr : T ′′ ! e ′′l with T ′′ <: T ′ and e ′′l v e ′l
The induction hypothesis on [v2/x]t gives Sl ¹ e ′′l t latent(Γ(ε)).

Since latent(Γ(ε)) = ⊥, and by e ′′l v e ′l v el , we have Sl ¹ el . Together with the

137

Appendix A. Soundness Proof for LPE

induction hypotheses, we apply the consistency Lemma 2.2 to obtain

S ¹ eff (APP,e1,e2,el)t latent(Γ(f))

– case T-APP-POLY: similar, shown in Section 2.8.2.

� Case E-THROW: t = throw(p) and t ↓ 〈throw(p),dynEff (THROW(p))〉.
By typing rule T-THROW, we obtain:

Γ; f ` throw(p) : Nothing ! eff (THROW(p))

By Lemma 2.2, we conclude

dynEff (THROW(p)) ¹ eff (THROW(p))t latent(Γ(f))

� Case E-TRY-E: t = try t1 catch(p) t2. We have
t1 ↓ 〈throw(p),S1〉
t2 ↓ 〈r2,S2〉
St = dynEff (TRY,S1)

S = dynEff (CATCH(p),St ,S2)
From the typing rule T-TRY:

Γ; f ` t1 : T 1 ! e1 with T1 <: T

Γ; f ` t2 : T 2 ! e2 with T2 <: T

et = eff (TRY,e1)

e = eff (CATCH(p),et ,e2)
The induction hypotheses are

S1 ¹ e1 t latent(Γ(f))

S2 ¹ e2 t latent(Γ(f))
Applying Lemma 2.2 to St and et yields St ¹ et t latent(Γ(f)). Now we can apply the

same lemma to S and e and conclude S ¹ e t latent(Γ(f)).

� Case E-TRY: similar.

138

Bibliography

Martín Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Semantics of transactional

memory and automatic mutual exclusion. In Proceedings of the 35th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, POPL ’08, pages 63–74, New

York, NY, USA, 2008. ACM. ISBN 978-1-59593-689-9. doi: 10.1145/1328438.1328449. URL

http://doi.acm.org/10.1145/1328438.1328449.

Karim Ali and Ondřej Lhoták. Averroes: Whole-program analysis without the whole program.

In Giuseppe Castagna, editor, ECOOP 2013 – Object-Oriented Programming, volume 7920 of

Lecture Notes in Computer Science, pages 378–400. Springer Berlin Heidelberg, 2013. ISBN

978-3-642-39037-1. doi: 10.1007/978-3-642-39038-8_16. URL http://dx.doi.org/10.1007/

978-3-642-39038-8_16.

D. Aspinall and A. Compagnoni. Subtyping dependent types. In Logic in Computer Science,

1996. LICS ’96. Proceedings., Eleventh Annual IEEE Symposium on, pages 86–97, 1996. doi:

10.1109/LICS.1996.561307.

Philip Bagwell and Tiark Rompf. RRB-Trees: Efficient Immutable Vectors. Technical report,

2011.

Anindya Banerjee, DavidA. Naumann, and Stan Rosenberg. Regional logic for local reasoning

about global invariants. In Jan Vitek, editor, ECOOP 2008 – Object-Oriented Program-

ming, volume 5142 of Lecture Notes in Computer Science, pages 387–411. Springer Berlin

Heidelberg, 2008. ISBN 978-3-540-70591-8. doi: 10.1007/978-3-540-70592-5_17. URL

http://dx.doi.org/10.1007/978-3-540-70592-5_17.

Erik Barendsen and Sjaak Smetsers. Conventional and uniqueness typing in graph rewrite

systems. In RudrapatnaK. Shyamasundar, editor, Foundations of Software Technology and

Theoretical Computer Science, volume 761 of Lecture Notes in Computer Science, pages 41–51.

Springer Berlin Heidelberg, 1993. ISBN 978-3-540-57529-0. doi: 10.1007/3-540-57529-4_42.

URL http://dx.doi.org/10.1007/3-540-57529-4_42.

Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers. CoRR,

abs/1203.1539, 2012.

Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann, Rakesh

Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung, and Mohsen Vakilian. A

139

http://doi.acm.org/10.1145/1328438.1328449
http://dx.doi.org/10.1007/978-3-642-39038-8_16
http://dx.doi.org/10.1007/978-3-642-39038-8_16
http://dx.doi.org/10.1007/978-3-540-70592-5_17
http://dx.doi.org/10.1007/3-540-57529-4_42

Bibliography

type and effect system for deterministic parallel Java. In Proceedings of the 24th ACM

SIGPLAN conference on Object oriented programming systems languages and applications,

OOPSLA ’09, pages 97–116, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-766-0. doi:

10.1145/1640089.1640097. URL http://doi.acm.org/10.1145/1640089.1640097.

Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership types for object en-

capsulation. In Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, POPL ’03, pages 213–223, New York, NY, USA, 2003. ACM. ISBN 1-

58113-628-5. doi: 10.1145/604131.604156. URL http://doi.acm.org/10.1145/604131.604156.

Gilad Bracha. Pluggable type systems. In OOPSLA Workshop on Revival of Dynamic Languages,

2004.

Edwin Brady. Programming and reasoning with algebraic effects and dependent

types. To Appear in Proceedings of the ACM SIGPLAN international conference

on Functional programming, 2013. URL http://edwinb.wordpress.com/2013/03/28/

programming-and-reasoning-with-algebraic-effects-and-dependent-types/.

Sigmund Cherem and Radu Rugina. A practical escape and effect analysis for building

lightweight method summaries. In Proceedings of the 16th international conference on

Compiler construction, CC’07, pages 172–186, Berlin, Heidelberg, 2007. Springer-Verlag.

ISBN 978-3-540-71228-2. URL http://dl.acm.org/citation.cfm?id=1759937.1759953.

Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation and the disjointness of

type and effect. In Proceedings of the 17th ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications, OOPSLA ’02, pages 292–310, New

York, NY, USA, 2002. ACM. ISBN 1-58113-471-1. doi: 10.1145/582419.582447. URL http:

//doi.acm.org/10.1145/582419.582447.

David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible alias pro-

tection. In Proceedings of the 13th ACM SIGPLAN conference on Object-oriented pro-

gramming, systems, languages, and applications, OOPSLA ’98, pages 48–64, New York,

NY, USA, 1998. ACM. ISBN 1-58113-005-8. doi: 10.1145/286936.286947. URL http:

//doi.acm.org/10.1145/286936.286947.

William R. Cook. On understanding data abstraction, revisited. In Proceedings of the 24th ACM

SIGPLAN conference on Object oriented programming systems languages and applications,

OOPSLA ’09, pages 557–572, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-766-0. doi:

10.1145/1640089.1640133. URL http://doi.acm.org/10.1145/1640089.1640133.

Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion: from lists to streams

to nothing at all. In Proceedings of the 12th ACM SIGPLAN international conference on

Functional programming, ICFP ’07, pages 315–326, New York, NY, USA, 2007. ACM. ISBN 978-

1-59593-815-2. doi: 10.1145/1291151.1291199. URL http://doi.acm.org/10.1145/1291151.

1291199.

140

http://doi.acm.org/10.1145/1640089.1640097
http://doi.acm.org/10.1145/604131.604156
http://edwinb.wordpress.com/2013/03/28/programming-and-reasoning-with-algebraic-effects-and-dependent-types/
http://edwinb.wordpress.com/2013/03/28/programming-and-reasoning-with-algebraic-effects-and-dependent-types/
http://dl.acm.org/citation.cfm?id=1759937.1759953
http://doi.acm.org/10.1145/582419.582447
http://doi.acm.org/10.1145/582419.582447
http://doi.acm.org/10.1145/286936.286947
http://doi.acm.org/10.1145/286936.286947
http://doi.acm.org/10.1145/1640089.1640133
http://doi.acm.org/10.1145/1291151.1291199
http://doi.acm.org/10.1145/1291151.1291199

Bibliography

Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic universe types. In Erik Ernst,

editor, ECOOP 2007 – Object-Oriented Programming, volume 4609 of Lecture Notes in

Computer Science, pages 28–53. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-73588-5.

doi: 10.1007/978-3-540-73589-2_3. URL http://dx.doi.org/10.1007/978-3-540-73589-2_3.

Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kivanç Muşlu, and Todd W. Schiller. Building

and using pluggable type-checkers. In Proceedings of the 33rd International Conference on

Software Engineering, ICSE ’11, pages 681–690, New York, NY, USA, 2011. ACM. ISBN 978-

1-4503-0445-0. doi: 10.1145/1985793.1985889. URL http://doi.acm.org/10.1145/1985793.

1985889.

Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew Parkinson, and Hongseok

Yang. Views: compositional reasoning for concurrent programs. In Proceedings of the

40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

POPL ’13, pages 287–300, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1832-7. doi:

10.1145/2429069.2429104. URL http://doi.acm.org/10.1145/2429069.2429104.

Matthew Finifter, Adrian Mettler, Naveen Sastry, and David Wagner. Verifiable functional

purity in Java. In Proceedings of the 15th ACM conference on Computer and communications

security, CCS ’08, pages 161–174, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-810-7.

doi: 10.1145/1455770.1455793. URL http://doi.acm.org/10.1145/1455770.1455793.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of compiling

with continuations. In Proceedings of the ACM SIGPLAN 1993 conference on Programming

language design and implementation, PLDI ’93, pages 237–247, New York, NY, USA, 1993.

ACM. ISBN 0-89791-598-4. doi: 10.1145/155090.155113. URL http://doi.acm.org/10.1145/

155090.155113.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and

Raymie Stata. Extended static checking for java. In Proceedings of the ACM SIGPLAN 2002

Conference on Programming language design and implementation, PLDI ’02, pages 234–245,

New York, NY, USA, 2002. ACM. ISBN 1-58113-463-0. doi: 10.1145/512529.512558. URL

http://doi.acm.org/10.1145/512529.512558.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: elements of

reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1995. ISBN 0-201-63361-2.

David K. Gifford and John M. Lucassen. Integrating functional and imperative programming. In

Proceedings of the 1986 ACM conference on LISP and functional programming, LFP ’86, pages

28–38, New York, NY, USA, 1986. ACM. ISBN 0-89791-200-4. doi: 10.1145/319838.319848.

URL http://doi.acm.org/10.1145/319838.319848.

David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W. O’Toole. Report on the FX

programming language. Technical report, MIT/LCS/TR-531, 1992.

141

http://dx.doi.org/10.1007/978-3-540-73589-2_3
http://doi.acm.org/10.1145/1985793.1985889
http://doi.acm.org/10.1145/1985793.1985889
http://doi.acm.org/10.1145/2429069.2429104
http://doi.acm.org/10.1145/1455770.1455793
http://doi.acm.org/10.1145/155090.155113
http://doi.acm.org/10.1145/155090.155113
http://doi.acm.org/10.1145/512529.512558
http://doi.acm.org/10.1145/319838.319848

Bibliography

ColinS. Gordon, Werner Dietl, MichaelD. Ernst, and Dan Grossman. Java ui : Effects for

controlling ui object access. In Giuseppe Castagna, editor, ECOOP 2013 – Object-Oriented

Programming, volume 7920 of Lecture Notes in Computer Science, pages 179–204. Springer

Berlin Heidelberg, 2013. ISBN 978-3-642-39037-1. doi: 10.1007/978-3-642-39038-8_8. URL

http://dx.doi.org/10.1007/978-3-642-39038-8_8.

James Gosling, Bill Joy, Guy L. Steele, Jr., Gilad Bracha, and Alex Buckley. The Java Language

Specification, Java SE 7 Edition. Addison-Wesley Professional, 2013. ISBN 0133260224,

9780133260229.

Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and event-based

programming. Theor. Comput. Sci., 410(2-3):202–220, February 2009. ISSN 0304-3975. doi:

10.1016/j.tcs.2008.09.019. URL http://dx.doi.org/10.1016/j.tcs.2008.09.019.

Philipp Haller, Aleksandar Prokopec, Heather Miller, Viktor Klang, Roland Kuhn, and Vojin

Jovanovic. Futures and promises (Scala documentation), 2012. URL http://docs.scala-lang.

org/overviews/core/futures.html.

Anders Hejlsberg. The trouble with checked exceptions, 2003. URL http://www.artima.com/

intv/handcuffs.html.

Anders Hejlsberg. Introducing async – simplifying asynchronous programming, 2010. URL

http://channel9.msdn.com/Blogs/Charles/Anders-Hejlsberg-Introducing-Async.

My Hoang and John C. Mitchell. Lower bounds on type inference with subtypes. In Proceedings

of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

POPL ’95, pages 176–185, New York, NY, USA, 1995. ACM. ISBN 0-89791-692-1. doi: 10.

1145/199448.199481. URL http://doi.acm.org/10.1145/199448.199481.

Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. ReIm & ReImInfer: checking

and inference of reference immutability and method purity. In Proceedings of the ACM in-

ternational conference on Object oriented programming systems languages and applications,

OOPSLA ’12, pages 879–896, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1561-6. doi:

10.1145/2384616.2384680. URL http://doi.acm.org/10.1145/2384616.2384680.

IoannisT. Kassios. Dynamic frames: Support for framing, dependencies and sharing without

restrictions. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM 2006:

Formal Methods, volume 4085 of Lecture Notes in Computer Science, pages 268–283. Springer

Berlin Heidelberg, 2006. ISBN 978-3-540-37215-8. doi: 10.1007/11813040_19. URL http:

//dx.doi.org/10.1007/11813040_19.

Etienne Kneuss, Viktor Kunčak, and Philippe Suter. Effect analysis for programs with callbacks.

In Verified Software: Theories, Tools, Experiments, Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2013.

John Launchbury and Simon L. Peyton Jones. Lazy functional state threads. In Proceedings of

the ACM SIGPLAN 1994 conference on Programming language design and implementation,

142

http://dx.doi.org/10.1007/978-3-642-39038-8_8
http://dx.doi.org/10.1016/j.tcs.2008.09.019
http://docs.scala-lang.org/overviews/core/futures.html
http://docs.scala-lang.org/overviews/core/futures.html
http://www.artima.com/intv/handcuffs.html
http://www.artima.com/intv/handcuffs.html
http://channel9.msdn.com/Blogs/Charles/Anders-Hejlsberg-Introducing-Async
http://doi.acm.org/10.1145/199448.199481
http://doi.acm.org/10.1145/2384616.2384680
http://dx.doi.org/10.1007/11813040_19
http://dx.doi.org/10.1007/11813040_19

Bibliography

PLDI ’94, pages 24–35, New York, NY, USA, 1994. ACM. ISBN 0-89791-662-X. doi: 10.1145/

178243.178246. URL http://doi.acm.org/10.1145/178243.178246.

Doug Lea. A Java fork/join framework. In Proceedings of the ACM 2000 conference on Java

Grande, JAVA ’00, pages 36–43, New York, NY, USA, 2000. ACM. ISBN 1-58113-288-3. doi:

10.1145/337449.337465. URL http://doi.acm.org/10.1145/337449.337465.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of jml: a behavioral

interface specification language for java. SIGSOFT Softw. Eng. Notes, 31(3):1–38, May 2006.

ISSN 0163-5948. doi: 10.1145/1127878.1127884. URL http://doi.acm.org/10.1145/1127878.

1127884.

Daan Leijen. Koka: A language with effect inference. http://research.microsoft.com/en-

us/projects/koka/2012-overviewkoka.pdf, April 2012.

K. Rustan M. Leino and Peter Müller. Using the Spec# language, methodology, and tools to

write bug-free programs. In Peter Müller, editor, Advanced Lectures on Software Engineering,

pages 91–139. Springer-Verlag, Berlin, Heidelberg, 2010. ISBN 3-642-13009-7, 978-3-642-

13009-0. URL http://dl.acm.org/citation.cfm?id=2167938.2167942.

K.RustanM. Leino. Dafny: An automatic program verifier for functional correctness. In Ed-

mundM. Clarke and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence,

and Reasoning, volume 6355 of Lecture Notes in Computer Science, pages 348–370. Springer

Berlin Heidelberg, 2010. ISBN 978-3-642-17510-7. doi: 10.1007/978-3-642-17511-4_20.

URL http://dx.doi.org/10.1007/978-3-642-17511-4_20.

K.RustanM. Leino and Peter Müller. Object invariants in dynamic contexts. In Martin Odersky,

editor, ECOOP 2004 – Object-Oriented Programming, volume 3086 of Lecture Notes in

Computer Science, pages 491–515. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-22159-

3. doi: 10.1007/978-3-540-24851-4_22. URL http://dx.doi.org/10.1007/978-3-540-24851-4_

22.

Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular interpreters. In

Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL ’95, pages 333–343, New York, NY, USA, 1995. ACM. ISBN 0-89791-692-1.

doi: 10.1145/199448.199528. URL http://doi.acm.org/10.1145/199448.199528.

Ben Lippmeier. Type Inference and Optimisation for an Impure World. PhD thesis, Australian

National University, 2010.

J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proceedings of the 15th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’88, pages

47–57, New York, NY, USA, 1988. ACM. ISBN 0-89791-252-7. doi: 10.1145/73560.73564. URL

http://doi.acm.org/10.1145/73560.73564.

143

http://doi.acm.org/10.1145/178243.178246
http://doi.acm.org/10.1145/337449.337465
http://doi.acm.org/10.1145/1127878.1127884
http://doi.acm.org/10.1145/1127878.1127884
http://dl.acm.org/citation.cfm?id=2167938.2167942
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/978-3-540-24851-4_22
http://dx.doi.org/10.1007/978-3-540-24851-4_22
http://doi.acm.org/10.1145/199448.199528
http://doi.acm.org/10.1145/73560.73564

Bibliography

Daniel Marino and Todd Millstein. A generic type-and-effect system. In Proceedings of the 4th

international workshop on Types in language design and implementation, TLDI ’09, pages 39–

50, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-420-1. doi: 10.1145/1481861.1481868.

URL http://doi.acm.org/10.1145/1481861.1481868.

Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, July 1991.

ISSN 0890-5401. doi: 10.1016/0890-5401(91)90052-4. URL http://dx.doi.org/10.1016/

0890-5401(91)90052-4.

Flemming Nielson and HanneRiis Nielson. Type and effect systems. In Ernst-Rüdiger Olderog

and Bernhard Steffen, editors, Correct System Design, volume 1710 of Lecture Notes in

Computer Science, pages 114–136. Springer Berlin Heidelberg, 1999. ISBN 978-3-540-66624-

0. doi: 10.1007/3-540-48092-7_6. URL http://dx.doi.org/10.1007/3-540-48092-7_6.

Martin Odersky. The Scala language specification, 2013. URL http://www.scala-lang.org/

docu/files/ScalaReference.pdf.

Martin Odersky and Adriaan Moors. Fighting bit rot with types (experience report: Scala

collections). In Ravi Kannan and K Narayan Kumar, editors, IARCS Annual Confer-

ence on Foundations of Software Technology and Theoretical Computer Science (FSTTCS

2009), volume 4 of Leibniz International Proceedings in Informatics (LIPIcs), pages 427–

451, Dagstuhl, Germany, 2009. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN

978-3-939897-13-2. doi: http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2009.2338. URL http:

//drops.dagstuhl.de/opus/volltexte/2009/2338.

Oracle. Java Platform, Standard Edition 7, API Specification, 2013a. URL http://docs.oracle.

com/javase/7/docs/api/index.html.

Oracle. Java Platform, Standard Edition 8, API Specification, 2013b. URL http://download.

java.net/jdk8/docs/api/.

Matthew J. Parkinson and Gavin M. Bierman. Separation logic, abstraction and inheritance. In

Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of program-

ming languages, POPL ’08, pages 75–86, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-

689-9. doi: 10.1145/1328438.1328451. URL http://doi.acm.org/10.1145/1328438.1328451.

David J. Pearce. JPure: A modular purity system for Java. In Jens Knoop, editor, Compiler

Construction, volume 6601 of Lecture Notes in Computer Science, pages 104–123. Springer

Berlin Heidelberg, 2011. ISBN 978-3-642-19860-1. doi: 10.1007/978-3-642-19861-8_7. URL

http://dx.doi.org/10.1007/978-3-642-19861-8_7.

Simon L. Peyton Jones and Philip Wadler. Imperative functional programming. In Proceedings

of the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

POPL ’93, pages 71–84, New York, NY, USA, 1993. ACM. ISBN 0-89791-560-7. doi: 10.1145/

158511.158524. URL http://doi.acm.org/10.1145/158511.158524.

144

http://doi.acm.org/10.1145/1481861.1481868
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1007/3-540-48092-7_6
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://drops.dagstuhl.de/opus/volltexte/2009/2338
http://drops.dagstuhl.de/opus/volltexte/2009/2338
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://download.java.net/jdk8/docs/api/
http://download.java.net/jdk8/docs/api/
http://doi.acm.org/10.1145/1328438.1328451
http://dx.doi.org/10.1007/978-3-642-19861-8_7
http://doi.acm.org/10.1145/158511.158524

Bibliography

Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge, MA, USA,

2002. ISBN 0-262-16209-1.

Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separation logic using SMT.

In Natasha Sharygina and Helmut Veith, editors, Computer Aided Verification, volume 8044

of Lecture Notes in Computer Science, pages 773–789. Springer Berlin Heidelberg, 2013. ISBN

978-3-642-39798-1. doi: 10.1007/978-3-642-39799-8_54. URL http://dx.doi.org/10.1007/

978-3-642-39799-8_54.

John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings

of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS ’02, pages 55–

74, Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1483-9. URL http:

//dl.acm.org/citation.cfm?id=645683.664578.

Lukas Rytz, Nada Amin, and Martin Odersky. A flow-insensitive, modular effect system for

purity. In Proceedings of the 15th Workshop on Formal Techniques for Java-like Programs,

FTfJP ’13, pages 4:1–4:7, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2042-9. doi:

10.1145/2489804.2489808. URL http://doi.acm.org/10.1145/2489804.2489808.

Amr Sabry. What is a purely functional language? Journal of Functional Programming, 8:1–22,

0 1998. ISSN 1469-7653. doi: 10.1017/S0956796897002943. URL http://journals.cambridge.

org/article_S0956796897002943.

Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames: Combining dynamic

frames and separation logic. In Sophia Drossopoulou, editor, ECOOP 2009 – Object-Oriented

Programming, volume 5653 of Lecture Notes in Computer Science, pages 148–172. Springer

Berlin Heidelberg, 2009. ISBN 978-3-642-03012-3. doi: 10.1007/978-3-642-03013-0_8. URL

http://dx.doi.org/10.1007/978-3-642-03013-0_8.

Geoffrey S. Smith. Principal type schemes for functional programs with overloading and sub-

typing. In Selected papers of the colloquium on Formal approaches of software engineering,

TAPSOFT ’93, pages 197–226, Amsterdam, The Netherlands, The Netherlands, 1994. Elsevier

Science Publishers B. V. URL http://dl.acm.org/citation.cfm?id=202776.202784.

Manu Sridharan, Satish Chandra, Julian Dolby, StephenJ. Fink, and Eran Yahav. Alias analysis

for object-oriented programs. In Dave Clarke, James Noble, and Tobias Wrigstad, editors,

Aliasing in Object-Oriented Programming. Types, Analysis and Verification, volume 7850 of

Lecture Notes in Computer Science, pages 196–232. Springer Berlin Heidelberg, 2013. ISBN

978-3-642-36945-2. doi: 10.1007/978-3-642-36946-9_8. URL http://dx.doi.org/10.1007/

978-3-642-36946-9_8.

Alexandru Sălcianu and Martin Rinard. Purity and side effect analysis for Java programs. In

Radhia Cousot, editor, Verification, Model Checking, and Abstract Interpretation, volume

3385 of Lecture Notes in Computer Science, pages 199–215. Springer Berlin Heidelberg, 2005.

ISBN 978-3-540-24297-0. doi: 10.1007/978-3-540-30579-8_14. URL http://dx.doi.org/10.

1007/978-3-540-30579-8_14.

145

http://dx.doi.org/10.1007/978-3-642-39799-8_54
http://dx.doi.org/10.1007/978-3-642-39799-8_54
http://dl.acm.org/citation.cfm?id=645683.664578
http://dl.acm.org/citation.cfm?id=645683.664578
http://doi.acm.org/10.1145/2489804.2489808
http://journals.cambridge.org/article_S0956796897002943
http://journals.cambridge.org/article_S0956796897002943
http://dx.doi.org/10.1007/978-3-642-03013-0_8
http://dl.acm.org/citation.cfm?id=202776.202784
http://dx.doi.org/10.1007/978-3-642-36946-9_8
http://dx.doi.org/10.1007/978-3-642-36946-9_8
http://dx.doi.org/10.1007/978-3-540-30579-8_14
http://dx.doi.org/10.1007/978-3-540-30579-8_14

Bibliography

Don Syme, Tomas Petricek, and Dmitry Lomov. The F# asynchronous programming model. In

Proceedings of the 13th international conference on Practical aspects of declarative languages,

PADL’11, pages 175–189, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-18377-5.

URL http://dl.acm.org/citation.cfm?id=1946313.1946334.

J. Talpin and P. Jouvelot. The type and effect discipline. In Logic in Computer Science, 1992.

LICS ’92., Proceedings of the Seventh Annual IEEE Symposium on, pages 162–173, 1992a. doi:

10.1109/LICS.1992.185530.

Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect inference. Jour-

nal of Functional Programming, 2:245–271, 6 1992b. ISSN 1469-7653. doi: 10.1017/

S0956796800000393. URL http://journals.cambridge.org/article_S0956796800000393.

Ross Tate. The sequential semantics of producer effect systems. In Proceedings of the 40th

annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL

’13, pages 15–26, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1832-7. doi: 10.1145/

2429069.2429074. URL http://doi.acm.org/10.1145/2429069.2429074.

Tachio Terauchi and Alex Aiken. Witnessing side-effects. In Proceedings of the tenth ACM

SIGPLAN international conference on Functional programming, ICFP ’05, pages 105–115,

New York, NY, USA, 2005. ACM. ISBN 1-59593-064-7. doi: 10.1145/1086365.1086379. URL

http://doi.acm.org/10.1145/1086365.1086379.

Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value λ-calculus using

a stack of regions. In Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, POPL ’94, pages 188–201, New York, NY, USA, 1994. ACM. ISBN 0-

89791-636-0. doi: 10.1145/174675.177855. URL http://doi.acm.org/10.1145/174675.177855.

Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Højfeld, and Olesen Peter

Sestoft. Programming with regions in the MLKit (revised for version 4.3.0). Technical report,

IT University of Copenhagen, January 2006.

Matthew S. Tschantz and Michael D. Ernst. Javari: adding reference immutability to Java. In

Proceedings of the 20th annual ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications, OOPSLA ’05, pages 211–230, New York, NY, USA, 2005.

ACM. ISBN 1-59593-031-0. doi: 10.1145/1094811.1094828. URL http://doi.acm.org/10.

1145/1094811.1094828.

Marko van Dooren and Eric Steegmans. Combining the robustness of checked exceptions

with the flexibility of unchecked exceptions using anchored exception declarations. In

Proceedings of the 20th annual ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications, OOPSLA ’05, pages 455–471, New York, NY, USA, 2005.

ACM. ISBN 1-59593-031-0. doi: 10.1145/1094811.1094847. URL http://doi.acm.org/10.

1145/1094811.1094847.

146

http://dl.acm.org/citation.cfm?id=1946313.1946334
http://journals.cambridge.org/article_S0956796800000393
http://doi.acm.org/10.1145/2429069.2429074
http://doi.acm.org/10.1145/1086365.1086379
http://doi.acm.org/10.1145/174675.177855
http://doi.acm.org/10.1145/1094811.1094828
http://doi.acm.org/10.1145/1094811.1094828
http://doi.acm.org/10.1145/1094811.1094847
http://doi.acm.org/10.1145/1094811.1094847

Bibliography

Philip Wadler. Linear types can change the world! In C.B. Jones, editor, Proceedings of the

IFIP Working Group 2.2/2.3 Working Conference on Programming Concepts and Methods.

North-Holland, 1990. ISBN 9780444885456.

Philip Wadler. How to declare an imperative. ACM Comput. Surv., 29(3):240–263, September

1997. ISSN 0360-0300. doi: 10.1145/262009.262011. URL http://doi.acm.org/10.1145/

262009.262011.

Philip Wadler. The marriage of effects and monads. In Proceedings of the third ACM SIGPLAN

international conference on Functional programming, ICFP ’98, pages 63–74, New York, NY,

USA, 1998. ACM. ISBN 1-58113-024-4. doi: 10.1145/289423.289429. URL http://doi.acm.

org/10.1145/289423.289429.

147

http://doi.acm.org/10.1145/262009.262011
http://doi.acm.org/10.1145/262009.262011
http://doi.acm.org/10.1145/289423.289429
http://doi.acm.org/10.1145/289423.289429

Curriculum Vitae

Personal Information

Name Lukas Rytz

Date and Place of Birth October 22, 1983, Berne, Switzerland

Education

2008 - Present PhD École Polytechnique Fédérale de Lausanne (EPFL)

2005 - 2007 MSc in Computer Science at EPFL

2002 - 2005 BSc in Computer Science at EPFL

Professional Experience

2006 Engineer at Programming Methods Laboratory, EPFL

2005 Internship at Microsoft Switzerland

149

	Zusammenfassung (Deutsch)
	Abstract (English)
	Acknowledgements
	Table of Contents
	Introduction
	Overview
	Contributions
	Related Work
	Type-and-Effect Systems
	Monads
	Alternative Systems for Controlling Effects
	Program Verification

	A Generic Framework for Polymorphic Effect-Checking
	Introducing Type-and-Effect Systems
	Effects Have ``May'' Semantics
	A Generic Representation for Effects

	Effect-Polymorphism
	The Need for Lightweight Syntax
	Effect-Polymorphic Function Types

	Abstracting Over Effect Domains
	Combining Multiple Effect Domains
	Annotating Multiple Effect Domains

	Static Semantics
	Subtyping
	Typing Rules

	Examples of Concrete Effect Domains
	Exceptions
	Asynchronous Operations

	Dynamic Semantics
	Extensible Effect Domains
	Evaluation Rules

	Effect Soundness
	Consistency Requirement
	Soundness Proofs

	Conclusion

	Dependent Types for Relative Effects Declarations
	Overview
	Relative Effect Declarations

	Formalization
	Subtyping
	Typing Rules

	Relative Effect Declarations in Scala
	Syntax for Relative Effect Annotations
	Refined Types for Effect-Polymorphism
	Relative Effects for Nested Definitions

	Expressiveness of Relative Effects
	Related Work
	Conclusion

	A Type-and-Effect System for Purity
	Introduction
	Overview
	Purity and Modification Effects
	Ownership and Locality
	Freshness and Result Localities
	Effects of Field Updates
	Freshness Depends on Purity

	Formalization
	Subtyping
	Typing Rules
	Typing PUR Requires ANF

	Implementation of the Purity System for Scala
	Assignment Effects
	Flow-Insensitivity to Support Higher-Order Code
	Polymorphic Purity Effects
	Examples and Limitations

	Related Work
	Regions
	Ownership Types
	Pointer Analysis
	Other Related Work

	Conclusion

	Effect Checking in Scala
	Programming With Effects
	Annotating Effects in Multiple Domains
	Ascriptions and Effect Casts
	Annotating Constructors and Default Arguments
	Singleton Objects, Lazy Values and By-Name Parameters
	Effects Affect Typing and Subtyping

	Effect Checking in the Scala Collections Library
	Option
	Breaks
	Core Collection Classes

	Implementing Effect Domains
	Effect Lattice
	Domain Definition

	Internals of the Compiler Plugin
	Compiler Plugins for Scala
	Naming and Typing in the Scala Compiler
	Implementation of the Effects Plugin
	Propagation of Type Annotations in the Scala Compiler
	Implementing Effect Checking as a Separate Compilation Phase

	Future Work
	Effect Annotations for Existing Libraries
	Effect Inference for Existing Libraries
	External Effect Domain Definitions

	Conclusion

	Conclusion
	Soundness Proof for LPE
	Lemmas
	Canonical Forms
	Value Typing Environment
	Substitution Lemmas

	Soundness Theorems
	Preservation
	Effect Soundness

	Bibliography
	Curriculum Vitae

